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ABSTRACT

For the traditional ALOHA system without capture, the Markov chain obtained using the num-
ber of backlogged users at each slot is shown to be non-ergodic. So the infinite population ALOHA
with fixed retransmission probabilities is unstable for any choice of the arrival rates and
retransmission probabilities, The capture ALOHA system 1s also shown to be unstable for any ar-
rival rate unless it has perfect capture. In this paper, we study a stabilization policy for capture
ALOHA systemn that controls the retransmission probabilities and prove the stability of its
multidimensional Markovian model by employing a continuous Lyapunov function, and thus ident-
ify the stability region. We also study a delay performance through computer simulation to show
the stability for any input rate below the maximum achievable channel throughput,
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1. INTRODUCTION

We study a slotted ALOHA, packet communi-
ation system that operates over a capture chan
nel. In a capture channel, differences in the
levels of received power and the times of arrival
enable the receiver to successfully receive a pa
cket even when two or more have been transmit
ted simultaneously.

One of the earliest studies of capture is due to
Roberts[1]. He investigated a slotted ALOHA
system with and without capture for both satel
lite and ground radio channels, Metzner| 2] ex
ploited the capture phenomenon by dividing users
into two groups. Namislo| 3] considered the same
model but assumed that the capture phenomenon
arises because of path loss or shadow and Ray
leigh fading. Leel4] proposed priority free mul
tiple power-level random access schemes for a
similar model and showed the improved throu
ghput and delay characteristics of the system,
Shwartz and Sidi | 5] analyzed the effect of vari
ous kinds of errors such as erasures, captures and
noise on the slotted ALOHA system. Cidon and
Sidi[ 6], studied the capture effect in the context
of collision resolution algorithms,

Recently, a number of researchers have studied
the applications of ALOHA systems to spread-
spectrum multiple access communication networks,
Davis and Gronemeyer| 7] have investigated com
bined power and time of arrival capture i a
spread spectrum random access system, Pursley
[8] studied the performance of frequency hop tr
ansmission in a packet comrnunication hetwork
and the effects of multiple-access interference in
frequency-hop radio networks. Polydolos and Si
lvester; 11| proposed an analytic framework for
the study of random access packet -switched spre
ad-spectrum networks under various link topo
logies and channel conditions. Thev anticipated
that mstability would occur since a simular prob
lem exists with narrow band random access sys
tems. In (9], based on a Morkovian model, they
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identified the conditions for the instability of the
nfinite user capture ALOHA model when re-
transmission control 1s not employed.

In this paper, we stabilize the capture ALOHA
system by employving a decentralized multiplicat-
ive control algorithm and determine, after pro-
ving its stability, the stability region as a func-
tion of the capture parameter,

In section Il we obtain a Markov model that
describes the fluctuation of the backlog. In sec-
tion [l we comment on the stability issue. Then
we formulate the retransmission control policy
and compute the throughput as a function of the
capture parameter. In section IV, we prove via
enmploying o continuous lyapunov function that
the retransmussion control policy leads to a stable
system, 1.e. the average backlog is finite, In sec
tion Vo computer simulation results are provided,
that confirms the stable operation of the system.

Finally we summarize our results in section V1,

Il. MARKOVIAN MODEL

1. User Model

We assume the there are an infinite number of
independent and identical users in the system,
Fach user can have at most one packet waiting to
be transmitted at any time :there are no queues
assoctated with the users, The cumulative in-
coming traffic is Poisson distributed with a mean

rate of A packets per slot.

2. Channel Model

The channel 1s assumed to be noiseless, The
time axis s divided into constant intervals called
slots. The messages are transmitted in packets
whose length are cqual to or less than the length
of a slot. The channel is such that a receiver can,
with some positive probability, decode one of sev-
eral simultaneous signals on the channel. This
broad detinition includes capture because of
power varlations (random or fixed) and because
of different times of arrival 1n spread-spectrum

systems. Propagation delays are negligible and
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ignored. All users in the system are informed of
the outcome of the slots 10, 1, e ! by the feedback
signal, immediately at the end of a time slot. Ad-
ditionally, it is assumed that the identity of a
captured packet is known to all the users. One
possibility is to have the central receiver broad-
cast the identity of all succesfully received pack-
ets. Such an assumptions has been employed by

(61,

3. Channel Access Protocol

The Channel access protocol is executed by ea-
ch user schedule the transmissions of newly ar-
rived pacekts. We consider IFT (immediate first-
transmission} protocol under which new packets
that arrive during slot -1 are first transmitted in
slot ¢ with probability one. Slot ¢ is the time seg-
ment (¢, t-+17.

During each slot, each user with a backloged
packet must decide whether to transmit the
packet in that slot, Let /; be the feedback ran-
dom variable during slot (f, #-+1]. The user is
informed via the common feedback at the end of
slot ¢ (without error) that either the empty (Z;=
0), the capture slot (Z,=1), or the collision slot
(Z;=e). In addition at the end of slot ¢ each user
learns whose packet is captured. Each of two or
more users that transmits a packet and does not
capture the channel joins the backlog and awaits
retransmission at a later time,

We define (", as the probability that one pack-
et is succesfully received from among # simul-
taneous packets on the channel. Thus ", depen-
ds on the number of users transmitting simul-
taneously. Cy=0 and (' =1 by definition. Perfect
capture occurs if ,=1 for n = 2.

4. Markovian Model

Let N; be the number of backloged packets at
time ¢t and #;;= P[ N/, =7|N:=1] be the back-
log transition probabilities. We can develop the
channel transition probabilities that chatacterize
the dynamics of the channel backlog [9].

Let S(n, f) be the probability of a successful

packet in a time slot given that (Ny=mn, fi=f),
that is,

Sn, f)=PlzZi=1IN=n, i=f]. (2.1)

Then we may show that

Vet
7!

Sln, f)=% ¥ -
J 0 m-o

[m] 7 Q=F 1 Co.
(2.2).

Note that by the Poisson theorem, if f= f(»n)
depends on » such that

lim nf=up>0

n—

then

-

im [ ] =y “y:;

H—* L

for all m< «,

This Poissin approximation to binomial distri-
bution is only possible if f is controlled based on
the variations of », With this assumption, S{#, f)
of Eq.(2.2) can be approximated by

P AI -m
\(‘u) :: Z K (‘I+m
=0 m=0 ['m'
-y AW ISRy (2.3)
| k! :

Noth that S(u) may appear to follow from the
standard Poisson first introduced by Abramson
[10] but this is not valid at all unless f is con-
trolled. Many authors |2], [41, (8], [10], [11],
[12] have used this formula in their analysis
without fully justifying their approach.

In fact it i1s shown [ 9] that for both protocols
the chain (N:)¢ >0, is not ergodic unless lim ,>

n-— L
0. Accordingly, neither S(n, f) nor S(u) is an
achievable channel throughput and so the thr-
oughput in steady-state is zero.
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[II. STABILIZATION OF ALOHA SYSTEM WITH
CAPTURE

For the traditional ALOHA system without ca
pture, Kaplan [13] proved that the Markov chain
obtained, using the number of backlogged users
at each slot as the state, is non-ergodic. So the
infinite population ALOHA with fixed retransmus
sion probabilities 1s unstable for any choice of the
arrival rate and retransmission probability [14].
In [9], we reported that the capture ALOHA sys
tem is also unstable unless lim ¢, > (0. The un

controlled ALOHA system with capture probabil-
ities C,=(Q" for some 0<¢ <1 is unstable for
any arrival rate of A. Yet, it 1s not obvious how
retransmission control will change the capacity
region. Our goal has been to identify the stability
region, when a decentralized retransmission con-
trol policy is employed.

In this section, we will study a policy that con-
trols the retransmission probabilities and thereby
maintains the retransmitted traffic intensity at an
optimal level. Our control policy 1s similar to the
one proposed by Hajek and Van lLoon |15] and
differs from the ones proposed by Rivest [16],
Tsitsiklis {17]. We shall assume that ¢, = ("
This choice is consistant with (7], 18], and [11]
and is also analytically tractable.

1. Retransmission Control Algorithm

Recall that Z, denotes the channel feedback in-
formation at time f+1, and that f is the retrans
mission probability for the backlogged users at
time ¢, Thus f; must be a function of the channel
output history (Z(s) :s<t) for each, {, and 0 < f;
< 1. We consider the retransmissioncontrol algor
ithm first proposed in [15] for the standard
ALOHA model :

1=t (ZD fing} (3.1)

for some positive constants ¥, 8, a(0), a(1) and a
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(e). Note that the process (N, f;) is a two-
dimensional Markov process with state space Z+
x [0, 1]. The goal of the control policy is to steer
the retransmission traffic in the direction of the
optimum. Consequently the choice of ¥, 8, and a
(0), (1) and ale) is closely associated with the
dynamics of the traffic intensity, In order to ob-
tain a(0), a(1), ale), we construct a local model
as in [15]. For an integer #>0, the Markov pro-
cess {f;) obtained by localizing the Markov pro
cess (Ny, fi) to (N,)) =n evolves as follows,

fﬂh‘l"“:ﬁ/\afy(lf)fhz: (3.2

If we define ¥,= In (nf,) for-n>0, then (¥,) is

also a Markov process that evolves as
W Hnng) AW +Ye(z) (3.3)

where ¢(7) == In(a(7)) for i == 0, 1,e. Note that the
transitions of ‘i’, do not depend on »n except thr
ough the term In(ng). Hence we will study the
following stochastic recursion algorithm by as
suming that W, <In(xg) for all t(this assumption
will be less crucial and can be justified by in-

creasing n | 15})

Yoo = WYl (3.4)

2. Choice of Parameters

The choice of the retransmission control para-
meters will be made based on the drift of the lo
cal model. Lemma(4.3) in section /1" justifies this
approach by establishing that the error approxi-
mating the global drift by the local drift goes to
zero as the backlog grows. Define

m(W) =7 "ELAW|¥=¥] (3.5)
and

W) =Y CELA W= ] — miP) (3.6)



W/ E TYUGE A G2 Al L] YA nF

where A W,=¥,+, —¥,. Then m(¥) and 2(¥) are
the normalized drift and variance functions of the
real-valued Markov process(¥;).

In order for ¥, to move toward a stable value ‘¥*,
we need to choose ¢(0), ¢(1), c¢(e) so that

sgn(G(x) —G*)=—sgn(m(C(x))) VxR (3.7)

where sgn(y) =1 for y>0and 0 for y=0and —1
for y<9.

There are many choices of ¢(1) but we set ¢(1)
=(. After normalization, we find that

1—(BG*e " +e ™)

= T e e ) (38
c=c(1)=0 (3.9)
co=cle) = — £ (3.10)

e (6T e ™)

With this choice, it follows from the definition
that

m(W)=coe "+ 1—(0Ge “+e ™)) (3.11)
where ;G = A+ ¢e*.

r;fz(w) has the following properties and will be
used to prove the stability of the global model.
LEMMA(3.1)

(i)for any A and any 0<#<1, the function m
(W) is strictly decreasing in .

(ii ) for any 0<# <1, there exists a unique Y*€ R
such that me(¥*) = (.

PROOF : (i) This is simply implied by the in-
equality

ﬁ m(W)=C"{—coe " +ec,[0G e +8e " —e )]}
(3.12)

because G '=e¥>0and e™" —¢' "' =0 for 0<0<
1, and ¢,>0 and ¢.<0.

(i ) Existence of a solution in R follows from m
(+%)<0and m(—x)>0 and the continuity of
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m(¥), And uniqueness comes from the strict mo-
notonicity of m (W),
]

A typical drift function is plotted in Fig.1 and
shows the existence of globally stable points for
Q==0.5. The variance function #(¢,) is also plot-
ted in Fig. 1.

Having specified the retransmission control pol-
icy we now compute the expected throughput,
We first approximate the achievable throughput
and then relate it to the actual throughput.

Recall that the global throughput

n AMer
S N =T ¥ S (] 7=,

Then using Poisson approximations to Binomal,
we may approximate S(z, f) by

S =5(6)=0Ge " +e " —e " (3.13)
where with p=mnf, and ¢ =1+ pu. (3.14)

As () moves toward unity both * and 5* In
crease exponentially towards 5 and 1 (see Fig. 2),
respectively, and when 6=1, we get (,*=1 at
which S*=e¢"!, the famous number for the slot
ted ALOH A system with no capture.

V. STABILITY ANALYSIS

In this section we prove that the global model
(not the local Poisson approximation) is stable by
showing the geometric ergodicity of the Markov
chain X;=(N,, fi). We use a technique estab
lished by Hajek [19]. This approach was first
used by Cruz [18] to study an ALOHA system in
which the feedback channel is prone to errors,
and by Tsitsikis [17] to study a psudo-Bayesian
broadcast control scheme to study an ALOHA
system in which transmission errors as well as a
certain form of capture may occur.

If X and Y are random variables, then Y is said
to stochastically dominate X, written X <Y, if Plx
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>cl<PlY>c] forceR.

A random variable Z is said to be exponential
type if there exist $>0, D, such that

Ele < b

let 1Y;, t<0! be a sequence of random vari-
ables on a probability space (@, F, P) adapted to
an increasing sequence 1 /7, £ <01 of sub a-field of
F, thus Y, 1s Fymeasurable for each t, then the se-
quence Y., F,i is said to be exponential ivpe if
there exist s >0, D, such that

Elest Yo g <D Yizx0

[et 'X;! be an irreducible aperiodic Markov
chain on a denumerable state space, then 1 .X;} 1s
geometrically ergodic, 1f the stopping time t = min
>0 X = xat1s exponential type for some initial
state XNy = xy.

The proof of stability 1s based on a result due
to Hajek [ 19]. We reproduce Hajek's result for

convenience,

PROPOSITION (Hajek)
Suppose that 11, Fri1s exponential type and
that for some £€> (), a € R, we have

FlW, =W, W, >all|<—-e Y20

Then the stopping time t=minit=>20:W:<al is
exponential type provided that ¥, is exponential
type.

Assume, for some relatively prime integer 7, 7,
@ = (v, 1, v') where v=1v(#) such that 0<v<1
and 0<#<]1. Then we may consider the process
Xi=(N:, fi) as a Markov chain with the den-
umerable state space, 1(n, 8¢°) in, k nonnegative

integers |.

THEOREM (4.1)
if A< S* and ¥<7* for some 7* then the Mar-
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kov chain X,= (Ny, fi) is geometrically ergodic
and lim sup; E[N,]< B for some B<
ol
In order to prove this, we introduce a conti-
nuons Lyapunov function. Let

VV/ = VV(]V,, Vp) :‘\7,+agA(I',) for some a, A>O

(4.0)

where
Vi=¥~¥*and ¥,=In [(N, V1) £ ], (4.1)
” x -
gs(x) = A? In cosh (_X) \VxER. (4.2)

Note that with X,= (N, /), W(X)) is nonnegat-

wve and continuous in the open space
Se={X: 1 W(X;)<b for any b>0}.

Both Cruz[18], and Schwart and Sidi[5] have
employed this approach but with a different Lya-
punov function which is composed of two connec-
ted functions. Note that the function we proposed
resolves the discontinuity problem as in [5] and
[18], and that it may be utilized to prove the st-
ability for the higher dimensional Markovian sys-
tems.

LEMMA (4.1)
Let f(x)= -——rlz— A2 g\¥ (Ax) = tanh(x) sec B(x).
Then

S x) =~ () tanh(x) £ (x)
= () seck?(x) £ 200
+(5) S F ) + o
+(,,05) fV) f )
= (,21) £ F )

= (7)) sech(x) f"2(x).

PROOF : Let u{x)=tanh(x) and v(x)=sech’(x).
Then by Leibnitz formula,

S x) = (uv) W =Y (Z) 2 (x) v ¥ (x).

k=0
Note that

wM (x) = —2f""(x),
v (x) = =27V (x),

Substituting these into the above equation, we
have the result.

]

In view of the fact that #(x), v(x) are continuous
and finite Yx € R, this result shows that f*+V
(x) exists and is finite Yx € R,

Based on Lemma(4.1) and Taylor’s theorem, we
may obtain the following expansion,

net ik
gA(xg)—gA(xl):; ‘%@ (x2—x))*+ Raln)
' (4.3)

where

gy’ (n)
(n)!

Ruln) = (= x1)" and n = kx1 +{(1—x) x

for some 0< k< 1.

Now if we let 2 (x) =A"2g” (x) VY n=3, then

{n)
Ru(x) =M (xo—x1)" ¥Yn=3 (4.4)
A" n!

and

K (x)< o ¥Yn=23 (4.5)
Note that

0<lga’ (x) | <AVx, (4.6)
0< g1 (x) <1Vx, (4.7)
0<lgn” (x)] s% V. (4.8)
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Using power series expansions we can also estab-
lish that

e

In cosh(x) :% +0(x!) for x| <1 (4.9)

and

In cosh(x) = |x| =In2+0(e ") for |x|>1
(4.10)

Let Y; be Poisson process with mean A. Then
the drift of the channel backlog is always hound-
ed above by A.

E[A\"[+1"1Vt|1’ﬂt]Sl (4.11a)

The following result, which is tighter than Eq.
(4.11a), will be used for proving that {1, F,}is ex-
ponential type. We know that

x\".‘+1 :A\r1+ ’l_l(lt:l)
So
EIN =N\ Fi]=a—ELIZ=1)|F]

= A1 (1.11b)

=A-PF 0N Y
The last two steps may be justified from the
definitions of P, and 131 and using Proposition (A,
2) In Appendix A.

[

The first of the two conditions of Hajek's Prop-
osition to be satisfied can now be established.

PROPOSITION (4.1)
For some positive and finite values L, and I,

(IVVt-Flvu/'t | Ft) < 14;+].1Y[

PROOF : From the definition of ¥, in Eq.(4.1).

(Ne+ V1) S ]

%“'%:m[ (N, V1)
Ny
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alZ)fiNB ]

+]n[ 7

and thus

1 ; o 5
1‘*’1+1“‘P1|S_A\7[—\/1 INCa 1= N YO0 ] (4.12)

Since |\/ 1Ny | < Y, + 1

YVi+1

+max; Y|l (4.13)
<Y;+1+max, ¥l
Hence

Wra =Wl 1) <ty +Y: where 1o=1-+max; ¥ ||
(4.11)

Next by mean value theorem, there is some ye&
[x1, x-] such that

galx) = galx) + ga (y) (xo—xy)
Because |ga (x) | < AVx,
lgala) —galx)) | < Alxo—x | (4.15)

Finally, by combining Eqs.(4.14) and (4.15), we
get

| ”-1+1‘"”'1 1 < |A\'1+1‘*A\’¢| +a|gA(l', H)*gA([',)l

<Y+ 1+ adl+Y)),

which leads to the desired result with Li=aAz,
+land I, = aA+1.
2l

The above Proposition implies that {13, I} 1s
exponential type. It remains for us to prove that
the drift of W, is negative. This will be done in
several stages.

In Lemma (4.2) we bound the #-th moment of
the drift of the retransmitted traffic intensity.
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LEMMA (4.2)
EL(MW41—¥)" 1 F: J=0(N"") +0(r") ¥Yn<x

PROOF : Using the fact that (a+8)" < 2" Y(a"+
b™) for » = 2 and from Eq.(4.13),

EL(¥Y—¥)"|F]

E[(y:+1)"1F:]

+¥" max |¢;|”* }
N leil

< on1 {

Since Y, is Poisson random variable, all moments
exist and so

Elyr]<oc Yn<o,
O
Lemma (4.2), Eq.(4.3) and the fact that

| Raln) | COA" DY E[ (Wi =¥ | F ) Vn23
(4.16)

where g =xV;+(1-x)¥,4;, imply the following
result

ELgaVie) —galVe) 1 F, ]

.
:Atanh[—A—’] E[We1—W | F)

, (4.17)
~+sec b? [ —A’— ] E[¥W a—W)P | F ]
FOADOINH F0(A DoY),

|

In the following Lemma, the drift function of
the retransmitted traffic intensity is approximated
by m{¥,), obtained by using Poisson approximat-
ions to Binomial probabilities. It is shown that
the error is (AT D),

LEMMA (4.3)
E(W, =W | F ]=ym(¥,) +0(N ) +0(¥).

PROOF : Using Eq. (4.12),

|E[Wo1 =~ | F l=7m(¥,) |

< ELINi+1—~ Nt | Fe]

1
NV 1
+V{ELe(ZD )V F l—m(W) ) (4.18)

A
ST{[\/—f +Y{COlP()_PO|+‘Ce| |Pe'_PeH. (419)

Eq.(4.19) follows from Eq.(4.11a) and the defi-
nition of (Z;) and ¢,=0. So the result follows
from Propositions (A.1) and (A.3) in Appendix
A. The possibility that the inequality of Prop. 4.1
is strict is a direct consequence of the possibility
that truncation may occur,

0
The following approximation for the drift of W,
can now be derived based on Egs. (4.0), (4.7), (4.
17) and Lemma (4.2) and (4.3).

ElW, o —W I F ]=ElNewy—Ne | Fr ] (4.20)
Fal g W {ym(¥) +0(N DI +0(NT) +0(72)}

Note that from Lemma (3.1) in section III and

the fact that g,"'(x)=A tanh (-z- ) it follows that
e dm(¥) <0 V V,eR. (4.21)

This is a key fact.

Now we prove the negative drift of W,. If a=a,
+a,, then in order for W>a either N>a; or aga’
(1) >a, because W=N+ags(}l). Let as=aA®
Incosh(1). Then, the following are -equivalent
events

lagalV)>at &LV > AL (4.22)
PROPOSITION (4.2)

For some £>0, a€ R, we have
E[IV,-H*"Vp Wi>a | F,] < —€ Vt = 0.

PROQF : To prove this, four possible regions should
1863
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be considered. Note that X;= (N, }';) has an eq-
uivalent representation as (Ny, ¥;) or (N;, f)
since they are instantaneous functions of both N,
and f;.

Given some a;, 6<1 and A€ (3, %) we par-
tition K? of the state space into four regions as
follows. Let

O ={X/:N>aand | V| <81,
Q:=1X::N;>aand |V, | <81,
03={X;:0<N;<a and |V, | >A},
Qi=1X,: N >ajand | Vi | > A},

Note that

Q1 C Q2
Hence we need to consider only Q1, Q2 and Q3.

CASE1:X,e(

In this case, Ny is large and |V| is small. From
Proposition (B.1) in Appendix B, we draw the
following consequence since § is chosen small :

Py=S*+0(5). (4.23)

Using Eq (4.11b) and combining with Eq.(4.23),
we have

E[Nt1=N/ | Fi]=2-Pi+0(N )
=A=S*4+00) + 0N ).

Consequently, if we choose & sufficiently small

and a; large enough, there exists £>0 such that

if A< S* then

E[A‘V,wrl"]\’vt | F,]:A—S‘+O((5) +()(x\,p 1) < —2&

for arbitrarily small €> ().

Note also that from the properites of g4 (V) and
m(¥,)
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gy (F)m(¥,) 1 0ass |0,

however, g, (1') m(¥,) is still a negative quan-
tity. Furthermore, 1f N, is large enough and 7 is
small enough, N,>a,” for some @, and ¥<7’ for
some ¥ <1 implies

Yaa (D m¥) + ga (WD ON DY +0 (N2 +0(r2)

<&y (V) O(NTY +0(N 9 +0() <= for any

az1and €>0.

Hence from Eq.(4.20), if W,>a" for some large
a and Y<7Y  we have

ElWip =W B < ELNi3 =Nl Fe ]
+al¥ gy (U mi¥) + g0 DO D H0(N 8 +0(r2)]
S“‘26+a3% <—eVX €. (4.24)
CASE 2: Y, E()t_).

Since |11 26, we have |ga (1)) =68 for 0<é

<1 (see Egs.(4.9) and (4.10) and also we can find
o> () such that

| m(¥) | > 0. (4.25)
Hence g, (1) m(¥;) < —$0. Now if we choose N;
sufficiently large and ¥ small, there exist some
@ and ¥ such that N,>a;” and ¥<¥" imply

that

Y ) m(P)+ gy (VD OND 0N +0 ()

< —¢& for some £> ().

Therefore, we have the desired result by choos-

. Ate o . .
ng a> , that is, if W, >a’ for some a”” and

Q

Y<v", we have from Eq. (4.20)
ElWo =Wl F = ELN =N Fr]

+alVgn (o m¥) +ga (0N Y FO0(NT D) +0(rD)
(A+¢g)

g

<SA—al <A i<—e VX/€Q:,. (4.206)
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CASE 3: X:€0s.

Note that if V; is positive and very large, then
N should be large because V; = ¥,—W¥* and 0< f;
< 1. Thus this case is equivalent to CASE 2 by
choosing A sufficiently large,

Now let us choose A large enough so that |1}
is very large. If Ny<a (that is, N; is not large)
but V| is very large, then f; should be very
small. Therefore { X:€ (3} is equivalent to {1, <
—A}. In this case, the terms Q(N/!) and O(NF?)
in Eq.(4.20) are bounded, but can not be made as
small as we wish because N;<a;. However, since
Vi< —A, we have ga’(V,)< —A tanh(l) and so

gn (V) m(¥)<—gA tanh(l) for some ¢>0.
Thus choosing A sufficiently large and ¥ small,
we have for any 0< N, <a

vgs (Vo) m(P) + ga” (V) O(NT ) +0(NTH) +0(79)

+e€

for any a> 0 and some £> 0.

Hence from Eq.(4.20), there exist some @' and
¥ such that if W;>a" " and ¥<7"",

E[VV;+1_I/Vt|Ft]S“‘8 VX,E();g. (4.27)

The proof of the main theorem may now be
completed. Let a=maxia’, ¢”, "’} and ¥*=min
vy, v, v, Finally, if W(N:, I'}) 2 a, and ¥<7*,
then from Eqs. (4.24), (4.26) and (4.27)

EWip—Wi Frls—e VX €01UQ:UQs. (4.28)

From Proposition (4.1), {W,, F¢} is known to be
exponential type. Hence by Propesition of Hajek
we know that the stopping time t=min{¢>0: W,
(Ny, V1) <a} is exponential type, for any initial
state of exponential type. From this, it follows
that the time until (N, V';) becomes equal to {0,
0) is also exponential type, and thus chain X;=
(N:, fi) is geometrically ergodic. Furthermore,
Propositions (4.1) and (4.2) imply sup, £[W,]<
B, for some B;< o and so sup: K[ AN ]<B for

some B< o because Ny<W, for all £. Now the
conclusion of Theorem (4.1) is completed.
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Fig.3. Average backlog versus mean arrival rate for Q
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V. SIMULATION RESULTS

The purpose of this section is to demonstrate,
by simulation, that the slotted ALOHA system
with capture is stable for any input rate below
the maximum achievable channel throughput when
some retransmission control algorithm is employed.

The system was simulated for 50,000 time slots
for each choice of arrival rate A. For each trial
the sample mean and the sample variance and the
maximum backlog size were obtained during the
50,000 time slots. Throughout, we used ¥=0.3
which was suggested as the best choice for the
slotted ALOHA system with no capture [15], We
tested this by varying ¥ for typical values of (. A
typical result is shown in Fig.3 and indicates that
when the capture parameter increases the system
performance 1s insensitive to Y. Based on our
simulations we conclude that a good range of ¥ 1s
(0.2, 0.6). In Figs.3-4, we plot the average hack-

log size versus the mean arrival rate for the dif-
ferent values of ¥ and we show that the mean
backlog is well bounded when operating below
the maximum possible input rate. We note that
when (0 =0.1 the improvement in throughput is
noticeable and as ¢ increases the improvement is
dramatic.

The simulation results suggest the following :
(1) The control algorithm considered stabilizes
the system for any input rate below the channel
capacity.

(2) The difference between the actual model and
the local Poisson approximation is within some
permissible error in terms of the average backlog
size.

(3)For a given input rate, the average backlog
using local Poisson approximation is generally
decreasing larger than that of the actual model.
As @ increases the distinction is less noticeable.
(4) As the capture parameter () increases, the
mean backlog in overall range is generally decrea.
sing for any input rate below the capacity.
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(5) The mean backlog is not sensitive to changes
in ¥, but it gets larger when 7 is either very small
or very large. Good choices for ¥ range from
about (0.2 to about (.6,

We conclude based on the simulation that cap-
ture reduces the delay dramatically, as well as im-
proves the channel utilization remarkably, com-
pared to the classical ALOHA without capture,

V1. CONCLUSION

We have studied a slotted capture ALOHA sys-
tem. In view of the instability of the system for a
class of capture probabilities, it was necessary to
use retransmission control polictes. We stabilize
the system by employing a retransmission control
algorithm and can derive the achievable channel
capacity as a function of the capture parameter,
We prove the stability of the multidimensional
Markovian model by using a continuous Lya-
punov function which may be applicable for other
complex multidimensional systems, We also have
obtained a delay performance through computer
simulation to show the stability for any input rate
below the maximum achievable channel through-
put. Based on the simulation, caputure reduces
the delay dramatically, as well as improves the
channel utilization remarkbly, campared to the
classical ALOHA without capture,

APPENDIX A

In this Appendix, we establish Propositions (A.
1) (A3).
Pi=rlLzi=jIN=n fi=f]
and

Po=Plzi=j 1 ¥=v]

Then it can be shown using the channel tran-
sition probabilities with 0 == 1—0,
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Py=e X1 f)™ (A1)

Pr=0e *nf(1—f)" ' +ore *(1—f)"
+(1—0f)e M —e M1 f)" (A.2)

and

Po=1—-[0e*nf(1~f)""'+0re (1~ f)"
+(1-0f)7e]. (A.3)
Now the approximate version, I;_,', of P; can be

expressed as follows after using the local Poisson
approximation[15].

ﬁ():e“(’, (A4)
Pr=(8G—1)e ¢ +e ", (A.5)
Pe=1-[0Ge " +e ") (A.6)

where ¢ = A-+¢*. Following the approach of [18],
We show that the errors of these approximations
converge uniformly to zero if either n—o or f—
0.

PROPOSITION (A.1)

)

| Py Pyl < 34— (A7)
n

|Po—Pol <2e71 f (A.8)

PROOF :

|Po“130‘ <e M(1—frr—e |

8e et 8e % .
Le e :
n n

<
and
|P()‘130| <2elerf<2e’lf

PROPOSITION (A.2)

PPl < % (166 2+620¢ 3], (A.9)
[P—P | < fl108e 24+2(1+0)e ! ] (A.10)
PROOF : By the definitions of P, and P,

IPL—- Pyl <0e* Inf(l—f)* ' —nfe ™ |

+ler+a0e e = (1= )"

+e M| (1=-0f)—e |

< —’11- [S40e e +8e e *+e ¥+ gre )]
using the fact that e™*<e <1 and e *<e},

1 N} . -3
< [16e 2+ 6266731,
This is (A.9). Similarly, (A.10) can be shown,
|

PROPOSITION (A.3)
|[Po=Pel <= [24¢ 72+ 6207 ],
| P~ P, < f[100e 2+2(2+0)e 2],

PROOF : Noting that
|Pu_13e| == lIS()_l"()+ﬁ1“1’1|
< |Py—Pyl + | P — Py

and using Proposition (A.1)-(A.2), one can have
the desired results.

1

APPENDIX B
In this appendix, we prove the following Prop-
osition. Recall that

Vi=%—-¥*'=Iny —In p* (B.1)

where u* is the optimal value of u, which de-
pends on the capture parameter 8, and
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Pi=(0C—1e “+e (B.2)
S*=(0G"— e " +e ", (B.3)
PROPOSITION (B.1)

If [V |A<o‘<1, then

|S*—Py| < 46 for some A>0.

To prove this, we give a Lemma in what follows.
Let

d(x,y)=1x—y| for some x,yE R.

Then if |V <§, we may have from (B.1)

d{u*, p)<maxig*|l—e |, p*I1—e*?[}.  (B.4)
Now by assumption of §< 1, we have

dlp*, p)<up*s+0(3). (B.5)
bécause e*’=1+5+0(5°) for §<1.

LEMMA (B.1}

If d(p*, w)<u*é and 6§<1, then
(£)d{e ™ e ™) <fe " d(u* u),

(id)d(e ¥, e ") <e *du* n,
(zzg) d(p*e™, ue ) <u*e *du* u).

PROOF : Consider
o M — g — ol (] — gl i)

If we choose & very small, we have e’ * W >~ 140
(u*—p). Hence

e W —eMx e (u—u*) <0 | u—ptl.

This leads to (7). Similarly (77) can be shown. Fin-
ally, consider
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I

).
4,'

e M —pe H= ure” w1 =

By choosing é very small, we have e*" ™ # = 14 pu* —pu

and i* % 1. Therefore
u
pre ¥ —pe r=pre (u—ut) <pre lp*—ul.

This is the desired result of (i77).

Now we prove the Proposition using Lemma(B.
1),
By (B.2) and (B.3), we have

SE— P hre = Ge )

= (e —e ")+ (e " —e ™),

After some algebraic manipulation using the fact
that ¢, = A+ p and (:*==A + u* we may obtain

St—P) = e Mure " —pe ¥)

F(1+ate e “—e ) te e W —e M),

Hence, from (B.5) and LLemma(B.1) we can show

that for very small o

d(S* =P <le *dig*e ¥ —pe *)
+i1-Atle *dle * e te dle ™ ¢ )

Spe A pte A dute )4,
because e *<1, |1—A0le *<1and e <1,
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