ON THE LARGE DEVIATION FOR THE GCF ϵ_{ϵ} EXPANSION WHEN THE PARAMETER $\epsilon \in[-1,1]$

Ting Zhong

Abstract. The GCF_{ϵ} expansion is a new class of continued fractions induced by the transformation $T_{\epsilon}:(0,1] \rightarrow(0,1]$:

$$
T_{\epsilon}(x)=\frac{-1+(k+1) x}{1+k-k \epsilon x} \text { for } x \in(1 /(k+1), 1 / k]
$$

Under the algorithm T_{ϵ}, every $x \in(0,1]$ corresponds to an increasing digits sequences $\left\{k_{n}, n \geq 1\right\}$. Their basic properties, including the ergodic properties, law of large number and central limit theorem have been discussed in [4], [5] and [7]. In this paper, we study the large deviation for the GCF_{ϵ} expansion and show that: $\left\{\frac{1}{n} \log k_{n}, n \geq 1\right\}$ satisfies the different large deviation principles when the parameter ϵ changes in $[-1,1]$, which generalizes a result of L. J. Zhu [9] who considered a case when $\epsilon(k) \equiv 0$ (i.e., Engel series).

1. Introduction

Let $\epsilon: \mathbb{N} \rightarrow \mathbb{R}$ be a parameter function satisfying the condition $\epsilon(k)+k+1>$ 0 and let $T_{\epsilon}:(0,1] \rightarrow(0,1]$ be a transformation defined by

$$
\begin{equation*}
T_{\epsilon}(x):=\frac{-1+(k+1) x}{1+\epsilon(k)-k \epsilon(k) x} \text { for } x \in B(k):=(1 /(k+1), 1 / k] \tag{1.1}
\end{equation*}
$$

Under the algorithm T_{ϵ}, every $x \in(0,1]$ is attached to an expansion, called generalized continued fraction $\left(\mathrm{GCF}_{\epsilon}\right)$ expansion (see [4]).

For any $x \in(0,1]$, the digits sequences $\left\{k_{n}\right\}_{n \geq 1}$ of the GCF_{ϵ} expansion is defined by

$$
\begin{equation*}
k_{1}=k_{1}(x):=\left\lfloor\frac{1}{x}\right\rfloor, \quad \text { and } \quad k_{n}=k_{n}(x):=k_{1}\left(T_{\epsilon}^{n-1}(x)\right) . \tag{1.2}
\end{equation*}
$$

Then $k_{n}(x)$ satisfies

$$
\begin{equation*}
k_{n+1}(x) \geq k_{n}(x) \text { for all } n \geq 1 \tag{1.3}
\end{equation*}
$$

[^0]It follows from the algorithm (1.1) that

$$
x=\frac{A_{n}+B_{n} T_{\epsilon}^{n}(x)}{C_{n}+D_{n} T_{\epsilon}^{n}(x)} \text { for all } n \geq 1
$$

where the numbers $A_{n}, B_{n}, C_{n}, D_{n}$ are given by the following recursive relations (see [4] for details):

$$
\begin{gather*}
\left(\begin{array}{ll}
C_{n} & D_{n} \\
A_{n} & B_{n}
\end{array}\right)=\left(\begin{array}{ll}
C_{n-1} & D_{n-1} \\
A_{n-1} & B_{n-1}
\end{array}\right)\left(\begin{array}{cc}
k_{n}+1 & k_{n} \epsilon\left(k_{n}\right) \\
1 & 1+\epsilon\left(k_{n}\right)
\end{array}\right), n \geq 1 \tag{1.4}\\
\quad \text { with } \quad\left(\begin{array}{ll}
C_{0} & D_{0} \\
A_{0} & B_{0}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{gather*}
$$

For any increasing integer vector $\left(k_{1}, \ldots, k_{n}\right)$, define the nth order cylinder as follows

$$
B\left(k_{1}, \ldots, k_{n}\right)=\left\{x \in(0,1]: k_{j}(x)=k_{j}, \forall 1 \leq j \leq n\right\} .
$$

Since there is a one-to-one correspondence between $x \in(0,1]$ and the nondecreasing integer sequence $\left(k_{1}, k_{2}, \ldots,\right)$, we have [4]

$$
\begin{equation*}
P\left(B\left(k_{1}, \ldots, k_{n}\right)\right)=\frac{B_{n} C_{n}-A_{n} D_{n}}{C_{n}\left(C_{n} k_{n}+D_{n}\right)} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(B\left(k_{1}, \ldots, k_{n}, k_{n+1}\right)\right)=\frac{B_{n} C_{n}-A_{n} D_{n}}{\left(C_{n} k_{n+1}+D_{n}\right)\left(C_{n}\left(k_{n+1}+1\right)+D_{n}\right)}, \tag{1.6}
\end{equation*}
$$

where $P(\cdot)$ denotes the usual Lebesgue measure. Moreover, for any $0 \leq b \leq \frac{1}{k_{n}}$,

$$
\left\{x \in[0,1]: k_{i}(x)=k_{i}, 1 \leq i \leq n, T_{\epsilon}^{n}(x) \leq b\right\}=\left[\frac{A_{n}}{C_{n}}, \frac{A_{n}+B_{n} b}{C_{n}+D_{n} b}\right]
$$

The GCF_{ϵ} transformation provides a big class of continued fractions algorithms which extends our knowledge on one-dimensional dynamical systems. With proper choice of the parameter ϵ, the GCF_{ϵ} expansions presented different stochastic properties and ergodic properties [4]. Specially, in the case of $-1<\epsilon \leq 1$ and $\epsilon(k)=c k+c$, the metric properties of GCF_{ϵ} were derived in [7] and $[8]$, respectively. the " $0-1$ " law and central limit theorem were studied by L. Shen and Y. Zhou [5]. In the present paper, we consider the large deviation for the GCF_{ϵ} expansion and show that: $\left\{\frac{1}{n} \log k_{n}, n \geq 1\right\}$ satisfies the different large deviation principles when the parameter ϵ changes in $\epsilon \in[-1,1]$, which generalizes a result of L. J. Zhu, [9] who considered a case when $\epsilon(k) \equiv 0$ (i.e., Engel series).

Now we introduce the large deviation principles. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of the real valued random variables defined on the probability space (Ω, \mathcal{F}, P). A function $I: \mathbb{R} \rightarrow[0, \infty]$ is called a good rate function if it is lower semi continuous and has compact level sets. We say that the sequence
$\left\{X_{n}, n \geq 1\right\}$ satisfies a large deviation principle with speed n and good rate function I under P, if for any Borel set Γ, we have

$$
-\inf _{x \in \Gamma^{o}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log P\left(x_{n} \in \Gamma\right) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log P\left(x_{n} \in \Gamma\right) \leq-\sup _{x \in \bar{\Gamma}} I(x),
$$

where Γ^{o} and $\bar{\Gamma}$ denotes the interior and the closure of Γ respectively. For general theory of the large deviations, we can refer to Dembo and Zeitouni [1] and Varadhan [6].

In this paper, we denote by (Ω, \mathcal{F}, P) a probability space, where $\Omega=$ $(0,1], \mathcal{F}$ is the Borel σ-algebra on Ω and P denotes the Lebesgue measure on (Ω, \mathcal{F}). And $k_{n}(x)$ always denotes the n-th digit of GCF_{ϵ} defined by (1.2); $A_{n}, B_{n}, C_{n}, D_{n}$ the numbers recursively defined by (1.4); and the parameters ϵ always satisfies $-1 \leq \epsilon(k) \leq 1$.

2. Preliminary

In this section, we present some fundamental properties about GCF_{ϵ} expansion for later use. The first lemma concerns the relationships between $A_{n}, B_{n}, C_{n}, D_{n}$ which are recursively defined by (1.4).

Lemma 2.1 ([4, 7]). For all $n \geq 1$ we have
(i) $C_{n}=\left(k_{n}+1\right) C_{n-1}+D_{n-1}>0, C_{0}=1$.
(ii) $D_{n}=k_{n} \epsilon\left(k_{n}\right) C_{n-1}+\left(1+\epsilon\left(k_{n}\right)\right) D_{n-1}, D_{0}=0$.
(iii) $B_{n} C_{n}-A_{n} D_{n}=\prod_{i=1}^{n}\left(k_{i}+1+\epsilon\left(k_{i}\right)\right)>0$.
(iv) $k_{n} C_{n}+D_{n}=\left(k_{n} C_{n-1}+D_{n-1}\right)\left(k_{n}+1+\epsilon\left(k_{n}\right)\right)$.
(v) $\epsilon\left(k_{n}\right) C_{n}-D_{n}=\epsilon\left(k_{n}\right) C_{n-1}-D_{n-1}$.

Using this lemma, we can derive the following two lemmas
Lemma 2.2. We have

$$
P(B(\underbrace{1,1, \ldots, 1}_{n}))= \begin{cases}\frac{1+\epsilon}{(2+\epsilon)^{n}+\epsilon}, & \text { as }-1<\epsilon \leq 1 ; \\ \frac{1}{n+1}, & \text { as } \epsilon=-1 .\end{cases}
$$

Proof. When $k_{i} \equiv k$ and $\epsilon(k) \equiv \epsilon$, Lemma 2.1(iii), (iv) and (v) give that

$$
\begin{aligned}
B_{n} C_{n}-A_{n} D_{n} & =(k+1+\epsilon)^{n} \\
k C_{n}+D_{n} & =\left(k C_{0}+D_{0}\right)(k+1+\epsilon)^{n}=k(k+1+\epsilon)^{n} \\
\epsilon C_{n}-D_{n} & =\epsilon C_{0}-D_{0}=\epsilon .
\end{aligned}
$$

So we have when $k_{i} \equiv 1$ and $\epsilon \in[-1,1]$,

$$
\frac{B_{n} C_{n}-A_{n} D_{n}}{k_{n} C_{n}+D_{n}}=1 ; \quad C_{n}(1+\epsilon)=(2+\epsilon)^{n}+\epsilon
$$

Then by (1.5), we get when $\epsilon \in(-1,1]$,

$$
\begin{equation*}
P(B(\underbrace{1,1, \ldots, 1}_{n}))=\frac{1}{C_{n}}=\frac{1+\epsilon}{(2+\epsilon)^{n}+\epsilon} \text {. } \tag{2.1}
\end{equation*}
$$

But when $\epsilon=-1$, the equality $C_{n}(1+\epsilon)=(2+\epsilon)^{n}+\epsilon$ cannot be used, and $\epsilon C_{n}-D_{n}=\epsilon$ becomes $C_{n}+D_{n}=1$. Using $C_{n}+D_{n}=1$ and Lemma 2.1(i), we get

$$
C_{n}=2 C_{n-1}+D_{n}=C_{n-1}+1=C_{0}+n=n+1 .
$$

So when $\epsilon=-1$, we have

$$
\begin{equation*}
P(B(\underbrace{1,1, \ldots, 1}_{n}))=\frac{1}{C_{n}}=\frac{1}{n+1} . \tag{2.2}
\end{equation*}
$$

Together (2.1) and (2.2) give the desired result.
Since the sequence $\left\{k_{n}\right\}_{n \geq 1}$ is not a Markov chain, so it's difficult to get the exact probability of $\left(k_{n} \leq N\right)$ by using the nice method in [2]. However, the next lemma can give an estimate of $P\left(k_{n} \leq N\right)$.
Lemma 2.3. For any positive number $N>1$, when $-1<\epsilon \leq 1$ we have

$$
\frac{1+\epsilon}{(2+\epsilon)^{n}+\epsilon} \leq P\left(k_{n} \leq N\right) \leq(1+n)^{N-1} \cdot \frac{1+\epsilon}{(2+\epsilon)^{n}+\epsilon}
$$

and when $\epsilon=-1$ we have

$$
\frac{1}{1+n} \leq P\left(k_{n} \leq N\right) \leq(1+n)^{N-2} .
$$

Proof. First we check the number of all the nth order cylinders of $\left(k_{n}=j\right)$, which is denoted by $\sharp\left(k_{n}=j\right)$. We first show that
$\left(1^{\circ}\right) \quad \sharp\left(k_{n}=1\right)=1$.
$\left(2^{\circ}\right) \quad \sharp\left(k_{n}=j\right) \leq n \cdot(1+n)^{j-2} \quad$ for all $j \geq 2$.
$\left(3^{\circ}\right) \quad \sharp\left(k_{n} \leq j\right) \leq(1+n)^{j-1} \quad$ for all $j \geq 1$.
In fact, by the increase of $k_{n} \geq 1$, we have $k_{n}=1=B(1,1, \ldots, 1)$ contains only one cylinder, thus (1°) is true.

Second, we prove $\left(2^{\circ}\right)$ by induction. Notice that, each cylinder $B\left(k_{1}, \ldots\right.$, $\left.k_{n-1}, k_{n}\right)$ of $\left(k_{n} \leq j-1\right)$ corresponds to n cylinders of $\left(k_{n}=j\right)$ as

$$
B\left(k_{1}, \ldots, k_{n-1}, j\right), B\left(k_{1}, \ldots, j, j\right), \ldots, B(j, \ldots, j, j)
$$

Thus

$$
\left(k_{n}=j\right) \leq n \cdot \sharp\left(k_{n} \leq j-1\right),
$$

here " \leq " is actually " $<$ ", because the right side of it contains some doublecounted cylinders.

Then with $\sharp\left(k_{n}=1\right)=1$, it is obvious that $\sharp\left(k_{n}=2\right)=n \leq n \cdot(1+n)^{2-2}$. So $\left(2^{\circ}\right)$ is true for $j=2$.

Now we suppose that $\left(2^{\circ}\right)$ is true for all of $j \leq i$, then for $j=i+1$,

$$
\begin{aligned}
\sharp\left(k_{n}=i+1\right) & \leq n\left(\sharp\left(k_{n}=1\right)+\sharp\left(k_{n}=2\right)+\sharp\left(k_{n}=3\right)+\cdots+\sharp\left(k_{n}=i\right)\right) \\
& \leq n\left(1+n+n(1+n)+n(1+n)^{2}+\cdots+n(1+n)^{i-2}\right)
\end{aligned}
$$

$$
=n\left(1+n+n(1+n) \cdot \frac{1-(1+n)^{i-2}}{1-(1+n)}\right)=n(1+n)^{i-1}
$$

which shows that $\left(2^{\circ}\right)$ is also true for $j=i+1$. So $\left(2^{\circ}\right)$ is proved by math induction.

Third, $\left(3^{\circ}\right)$ is follows from $\left(2^{\circ}\right)$ that,

$$
\begin{equation*}
\sharp\left(k_{n} \leq j\right)=\sharp\left(k_{n}=1\right)+\sharp\left(k_{n}=2\right)+\cdots+\sharp\left(k_{n}=j\right) \leq(1+n)^{j-1} . \tag{2.3}
\end{equation*}
$$

Now we can come to estimate $P\left(k_{n} \leq N\right)$. It's easy to see that,

$$
\begin{aligned}
P\left(B\left(k_{1}, k_{2}, \ldots, k_{n}\right)\right) & \leq P(B(1,1, \ldots, 1)) \text { and } \\
P(B(1,1, \ldots, 1)) & \leq P\left(k_{n} \leq N\right) \leq \sharp\left(k_{n} \leq N\right) \cdot P(B(1,1, \ldots, 1)) .
\end{aligned}
$$

Combining this with (2.3) and Lemma 2.2, we get the desired result.
In older to overcome the inadequacies of that the sequence $\left\{k_{n}, n \geq 1\right\}$ is not a Markov chain, we also need the following lemma.
Lemma 2.4 ([7]). Let $y_{n}:=\frac{D_{n}}{C_{n}}$ for all $n \geq 1$. Then

$$
-1<\epsilon(k) \leq 1 \Rightarrow-1<y_{n} \leq 1 .
$$

Using this lemma, we can get the following estimate:
Lemma 2.5. The conditional probability $P\left(k_{n+1}=k \mid k_{n}=j\right)$ satisfies that

$$
\begin{equation*}
\frac{j-1}{(k-1)(k+2)}<P\left(k_{n+1}=k \mid k_{n}=j\right) \leq \frac{j+1}{(k+1) k} . \tag{2.4}
\end{equation*}
$$

Proof. From (2.1) and (2.2), we can see that in every cylinder $B\left(k_{1}, \ldots, k_{n-1}\right)$,

$$
\begin{aligned}
P\left(k_{n+1}=k \mid k_{n}=j\right) & =\frac{P\left(B\left(k_{1}, \ldots, k_{n-1}, j, k\right)\right)}{P\left(B\left(k_{1}, \ldots, k_{n-1}, j\right)\right)} \\
& =\frac{C_{n}\left(j C_{n}+D_{n}\right)}{\left(k C_{n}+D_{n}\right)\left((k+1) C_{n}+D_{n}\right)} \\
& =\frac{\left(j+y_{n}\right)}{\left(k+y_{n}\right)\left(k+1+y_{n}\right)}, \quad \text { where } y_{n}=\frac{D_{n}}{C_{n}}
\end{aligned}
$$

So by $-1<y_{n} \leq 1$ and using the monotone property of $\frac{j+y_{n}}{k+y_{n}}$, we get

$$
\frac{j-1}{(k-1)(k+2)}<\frac{j+y_{n}}{\left(k+y_{n}\right)\left(k+y_{n}+1\right)} \leq \frac{j+1}{(k+1) k} .
$$

Thus (2.4) is proved.
Further, we have:
Lemma 2.6. Let $N=\max \left\{\frac{2-\theta}{\delta}, \frac{2}{\delta}\right\}$ and $\theta<1$. Then for all $j \geq N$, we have:

$$
\frac{1-\delta}{1-\theta} \leq \sum_{k \geq j}\left(\frac{k}{j}\right)^{\theta} P\left(k_{n+1}=k \mid k_{n}=j\right) \leq \frac{1+\delta}{1-\theta}
$$

Proof. From (2.4) we have,

$$
\begin{aligned}
\sum_{k \geq j}\left(\frac{k}{j}\right)^{\theta} P\left(k_{n+1}=k \mid k_{n}=j\right) & \leq \frac{1}{j}+\sum_{k \geq j+1}\left(\frac{k^{\theta}}{k(k+1)}\right) \cdot \frac{j+1}{j^{\theta}} \\
& \leq \frac{1}{j}+\frac{j+1}{j^{\theta}} \sum_{k \geq j+1} \frac{1}{k^{2-\theta}} \\
& \leq \frac{1}{j}+\frac{j+1}{j^{\theta}} \int_{j}^{\infty} \frac{1}{x^{2-\theta}} d x \\
& =\frac{1}{j}+\frac{j+1}{j^{\theta}} \frac{j^{\theta-1}}{1-\theta}=\frac{2+j-\theta}{j} \frac{1}{1-\theta} \\
& \leq \frac{1+\delta}{1-\theta} \quad \text { for } j \geq \frac{2-\theta}{\delta} .
\end{aligned}
$$

And

$$
\begin{aligned}
\sum_{k \geq j}\left(\frac{k}{j}\right)^{\theta} P\left(k_{n+1}=k \mid k_{n}=j\right) & \geq \frac{j-1}{j^{\theta}} \sum_{k \geq j} \frac{k^{\theta}}{(k+2)(k-1)} \\
& \geq \frac{j-1}{j^{\theta}} \sum_{k \geq j} k^{\theta-2} \frac{k}{k+1} \\
& \geq \frac{j-1}{j^{\theta}} \frac{j}{j+1} \int_{j}^{\infty} \frac{1}{x^{2-\theta}} d x \\
& =\frac{j-1}{j+1} \frac{1}{1-\theta} \geq \frac{1-\delta}{1-\theta} \quad \text { for } j \geq \frac{2}{\delta}
\end{aligned}
$$

3. Proof of the main result

Before we go to the statement and proof of the large deviations result for GCF_{ϵ} expansions, let us first state and prove the following lemma.

Lemma 3.1. Let $\left\{k_{n}, n \geq 1\right\}$ be the digits sequence of $G C F_{\epsilon}$ expansion. Then in the case of $-1<\epsilon \leq 1$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E\left(k_{n}^{\theta}\right)= \begin{cases}+\infty, & \text { when } \theta \geq 1 \\ \max \left\{\log \frac{1}{2+\epsilon}, \log \frac{1}{1-\theta}\right\} & \text { when } \theta<1\end{cases}
$$

and in the case of $\epsilon=-1$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E\left(k_{n}^{\theta}\right)= \begin{cases}+\infty, & \text { when } \theta \geq 1 \\ \log \frac{1}{1-\theta} & \text { when } \theta<1\end{cases}
$$

Proof. First, for any $\theta \geq 1$, from (1.4) and (1.5) we get $P\left(k_{1}=k\right)=\frac{B_{1} C_{1}-A_{1} D_{1}}{C_{1}\left(k_{1} C_{1}+D_{1}\right)}$ $=\frac{1}{k(k+1)}$, then by $k_{n} \geq k_{1}$ we have

$$
E\left(e^{\theta \log k_{n}}\right)=E\left(k_{n}^{\theta}\right) \geq E\left(k_{1}^{\theta}\right)=\sum_{k=1}^{\infty} \frac{1}{k(k+1)} k^{\theta}=+\infty
$$

Next, for any $\theta<1$, we divide the average into two terms:

$$
\begin{equation*}
\sum_{k=1}^{\infty} P\left(k_{n}=k\right) k^{\theta}=\sum_{k=1}^{N-1} P\left(k_{n}=k\right) k^{\theta}+\sum_{k=N}^{\infty} P\left(k_{n}=k\right) k^{\theta} \tag{3.1}
\end{equation*}
$$

and prove the results when $-1<\epsilon \leq 1$ and $\epsilon=-1$, respectively.
Part 1: In the case of $\theta<1$ and $-1<\epsilon \leq 1$:
(1) Lower bound

For the first term in the sum of (3.1), it follows from (2.1) that

$$
\begin{equation*}
\sum_{k=1}^{N-1} P\left(k_{n}=k\right) k^{\theta} \geq P\left(k_{n}=1\right) \cdot 1^{\theta}=P(B(\underbrace{1,1, \ldots, 1}_{n}))=\frac{1+\epsilon}{(2+\epsilon)^{n}+\epsilon} . \tag{3.2}
\end{equation*}
$$

For the second term in the sum of (3.1), it is clear that

$$
\sum_{k=N}^{\infty} P\left(k_{n}=k\right) k^{\theta} \geq \sum_{j=N}^{\infty} P\left(k_{n-1}=j\right) j^{\theta} \sum_{k=j}^{\infty} P\left(k_{n}=k \mid k_{n-1}=j\right) \cdot\left(\frac{k}{j}\right)^{\theta}
$$

Then by Lemma 2.6, we get a recursive relation:

$$
\sum_{k=N}^{\infty} P\left(k_{n}=k\right) k^{\theta} \geq\left(\frac{1-\delta}{1-\theta}\right) \sum_{j=N}^{\infty} P\left(k_{n-1}=j\right) j^{\theta}
$$

Iterating this process $n-1$ times until we get that

$$
\sum_{k=N}^{\infty} P\left(k_{n}=k\right) k^{\theta} \geq\left(\frac{1-\delta}{1-\theta}\right)^{n-1} \sum_{j=N}^{\infty} P\left(k_{1}=j\right) j^{\theta}
$$

And from (1.4) and (1.5) we have, for $\theta<1$,

$$
\begin{equation*}
\left.\sum_{j=N}^{\infty} P\left(k_{1}=j\right) j^{\theta}=\sum_{j=N}^{\infty} \frac{j^{\theta}}{j(j+1)}=: M \text { (convergent }\right) \tag{3.3}
\end{equation*}
$$

So we have

$$
\begin{equation*}
\sum_{k=N}^{\infty} P\left(k_{n}=k\right) k^{\theta} \geq\left(\frac{1-\delta}{1-\theta}\right)^{n-1} \sum_{j=N}^{\infty} P\left(k_{1}=j\right) j^{\theta}=M\left(\frac{1-\delta}{1-\theta}\right)^{n-1} \tag{3.4}
\end{equation*}
$$

Then we get that from (3.2) and (3.4)

$$
\begin{aligned}
\sum_{k=1}^{\infty} P\left(k_{n}=k\right) k^{\theta} & \geq \max \left\{\sum_{k=1}^{N} P\left(k_{n}=k\right) k^{\theta}, \sum_{k=N}^{\infty} P\left(k_{n}=k\right) k^{\theta}\right\} \\
& \geq \max \left\{\frac{1+\epsilon}{(2+\epsilon)^{n}+\epsilon}, M\left(\frac{1-\delta}{1-\theta}\right)^{n-1}\right\}
\end{aligned}
$$

As a consequence,

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \left(\sum_{k=N}^{\infty} P\left(k_{n}=k\right) k^{\theta}\right) \geq \max \left\{\log \frac{1}{2+\epsilon}, \log \frac{1+\delta}{1-\theta}\right\}
$$

Since $\delta>0$ is arbitrary, we get

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{1}{n} \log E\left(e^{\theta \log k_{n}}\right) \geq \max \left\{\log \frac{1}{2+\epsilon}, \log \frac{1}{1-\theta}\right\} \tag{3.5}
\end{equation*}
$$

which gives the lower bound of $\lim \inf _{n \rightarrow \infty} \frac{1}{n} \log E\left(e^{\theta \log k_{n}}\right)$ when $-1<\epsilon \leq 1$ and $\theta<1$.
(2) Upper bound

For the first term in the sum of (3.1), it follows from Lemma 2.3 that,

$$
\begin{aligned}
\sum_{k=1}^{N-1} P\left(k_{n}=k\right) k^{\theta} & \leq P\left(k_{n} \leq N\right) N^{\theta} \\
& \leq(1+n)^{N-1} \cdot \frac{1+\epsilon}{(2+\epsilon)^{n}+\epsilon} N^{\theta} \leq \frac{2(1+n)^{N} N^{\theta}}{(2+\epsilon)^{n}}
\end{aligned}
$$

For the second term in the sum of (3.1), it is also can be divided into the sum of the two terms:

$$
\begin{aligned}
\sum_{k=N}^{\infty} P\left(k_{n}=k\right) k^{\theta}= & \sum_{j=N}^{\infty} P\left(k_{n-1}=j\right) j^{\theta} \sum_{k=j}^{\infty} P\left(k_{n}=k \mid k_{n-1}=j\right)\left(\frac{k}{j}\right)^{\theta} \\
& +\sum_{j=1}^{N} P\left(k_{n-1}=j\right) j^{\theta} \sum_{k=N}^{\infty} P\left(k_{n}=k \mid k_{n-1}=j\right)\left(\frac{k}{j}\right)^{\theta} .
\end{aligned}
$$

By Lemma 2.6 and Lemma 2.3, we have for $-1<\epsilon \leq 1$,

$$
\begin{aligned}
\sum_{k=N}^{\infty} P\left(k_{n}=k\right) k^{\theta} & \leq \frac{1+\delta}{1-\theta}\left(\sum_{j=N}^{\infty} P\left(k_{n-1}=j\right) j^{\theta}+\sum_{j=1}^{N} P\left(k_{n-1}=j\right) j^{\theta}\right) \\
& \leq \frac{1+\delta}{1-\theta}\left(\sum_{k=N}^{\infty} P\left(k_{n-1}=k\right) k^{\theta}+\frac{2 n^{N-1}}{(2+\epsilon)^{n-1}}\right)
\end{aligned}
$$

Iterate this process $n-1$ times to get

$$
\begin{align*}
& \sum_{k=N}^{\infty} P\left(k_{n}=k\right) k^{\theta} \\
\leq & \left(\frac{1+\delta}{1-\theta}\right)^{n-1} \sum_{k=N}^{\infty} P\left(k_{1}=k\right) k^{\theta}+2 n^{N-2} \sum_{i=1}^{n-1}\left(\frac{1+\delta}{1-\theta}\right)^{i}\left(\frac{1}{2+\epsilon}\right)^{n-i}, \tag{3.7}
\end{align*}
$$

where the geometric series

$$
\begin{equation*}
\sum_{i=1}^{n-1}\left(\frac{1+\delta}{1-\theta}\right)^{i}\left(\frac{1}{2+\epsilon}\right)^{n-i}=O\left(\left(\frac{1}{2+\epsilon}\right)^{n-1}-\left(\frac{1+\delta}{1-\theta}\right)^{n-1}\right) \tag{3.8}
\end{equation*}
$$

Substituting (3.8) and (3.3) into (3.7), and combining with (3.6), we get

$$
\sum_{k=1}^{\infty} P\left(k_{n}=k\right) k^{\theta} \leq 2 n^{N-2} M_{1}\left(\frac{1+\delta}{1-\theta}\right)^{n-1}+(1+n)^{N} M_{2}\left(\frac{1}{2+\epsilon}\right)^{n-1}
$$

where M_{1} and M_{2} are two positive constants.
Therefore,

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{1}{n} \log E\left(e^{\theta \log k_{n}}\right) \\
\leq & \limsup _{n \rightarrow \infty} \frac{1}{n} \log \left(2 n^{N-2} M_{1}\left(\frac{1+\delta}{1-\theta}\right)^{n-1}+2(1+n)^{N-2} M_{2}\left(\frac{1}{2+\epsilon}\right)^{n-1}\right) \\
\leq & \max \left\{\log \frac{1+\delta}{1-\theta}, \log \frac{1}{2+\epsilon}\right\} .
\end{aligned}
$$

Since $\delta>0$ is arbitrary, we get

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E\left(e^{\theta \log k_{n}}\right) \leq \max \left\{\log \frac{1}{2+\epsilon}, \log \frac{1}{1-\theta}\right\}
$$

which gives the upper bound of $\lim _{n \rightarrow \infty} \frac{1}{n} \log E\left(e^{\theta \log k_{n}}\right)$ when $-1<\epsilon \leq 1$ and $\theta<1$.

Combining this upper bound and the lower: (3.5), we obtain when $\theta<1$ and $-1<\epsilon \leq 1$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E\left(e^{\theta \log k_{n}}\right)=\max \left\{\log \frac{1}{2+\epsilon}, \log \frac{1}{1-\theta}\right\}
$$

Part 2: In the case of $\theta<1$ and $\epsilon=-1$:
For the first term in the sum of (3.1), Lemma 2.3 gives that

$$
\frac{1}{1+n}(N-1)^{\theta} \leq \sum_{k=1}^{N-1} P\left(k_{n}=k\right) k^{\theta} \leq(1+n)^{N-2}(N-1)^{\theta} .
$$

As a consequence,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\sum_{k=1}^{N-1} P\left(k_{n}=k\right) k^{\theta}\right)=0
$$

So the result of $\lim _{n \rightarrow \infty} \frac{1}{n} \log E\left(e^{\theta \log k_{n}}\right)$ only depends on the second term in the sum of (3.1). So long as we instead using (2.1) by using (2.2) in the proof for the case of $-1<\epsilon \leq 1$, by the same proof method, we can get that when $\theta<1$ and $\epsilon=-1$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E\left(k_{n}^{\theta}\right)=\log \frac{1}{1-\theta}
$$

Now we can prove the following:
Theorem 3.2. Let $\left\{k_{n}\right\}_{n \geq 1}$ be the digits sequence of the $G C F_{\epsilon}$ expansion. Then $\left\{\frac{1}{n} \log k_{n}, n \geq 1\right\}$ satisfy the large deviation principle with speed n and good rate function $I(x)$ as

1. In the case of $-1<\epsilon<1$,

$$
I(x)= \begin{cases}x-1-\log x, & \text { if } x>\frac{1}{2+\epsilon} \\ \log (2+\epsilon)-(1+\epsilon) x, & \text { if } 0 \leq x<\frac{1}{2+\epsilon} \\ +\infty, & \text { if } x \leq 0 .\end{cases}
$$

2. In the case of $\epsilon=-1$,

$$
I(x)= \begin{cases}x-1-\log x, & \text { if } x>0 \\ +\infty, & \text { if } x \leq 0\end{cases}
$$

under P.
Proof. Lemma 3.2 actually gives that
When $-1<\epsilon \leq 1$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E\left(e^{\theta \log k_{n}}\right)= \begin{cases}+\infty, & \text { when } \theta \geq 1 ; \\ \log \frac{1}{1-\theta} & \text { when }-1-\epsilon \leq \theta<1 \\ \log \frac{1}{2+\epsilon} & \text { when } \theta<-1-\epsilon\end{cases}
$$

When $\epsilon=-1$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E\left(e^{\theta \log k_{n}}\right)= \begin{cases}+\infty, & \text { when } \theta \geq 1 \\ \log \frac{1}{1-\theta} & \text { when } \theta<1\end{cases}
$$

By Gartner-Ellis theorem (see e.g. Dembo and Zeitouni [1]), $\left\{\frac{1}{n} \log k_{n}, n \geq\right.$ $1\}$ satisfies a large deviation principle with rate function

$$
I(x)=\sup _{\theta \in \mathbb{R}}\{\theta x-\Gamma(\theta)\}
$$

where $\Gamma(\theta):=\frac{1}{n} \log E\left(e^{\theta \log k_{n}}\right)$ exists. Let $f(\theta)=\theta x-\Gamma(\theta)$, then

1. When $\theta<-1-\epsilon, f(\theta)=\theta x+\log (2+\epsilon)$,

$$
\sup _{\theta<-1-\epsilon}\{f(\theta)\}= \begin{cases}f(-1-\epsilon)=-(1+\epsilon) x+\log (2+\epsilon), & \text { if } x>0 \\ f(-\infty)=\lim _{\theta \rightarrow-\infty} \theta x+\log (2+\epsilon)=+\infty, & \text { if } x<0\end{cases}
$$

2. When $-1-\epsilon \leq \theta<1, f(\theta)=\theta x+\log (1-\theta)$ has maximum points: $\theta=1-\frac{1}{x}$. Notice that $-1-\epsilon \leq \theta<1$ and $\theta=1-\frac{1}{x} \Rightarrow x \geq \frac{1}{2+\epsilon}$, so we have

$$
\sup _{-1-\epsilon \leq \theta<1}\{f(\theta)\}=f\left(1-\frac{1}{x}\right)=x-1-\log x \quad \text { for all } x \geq \frac{1}{2+\epsilon}
$$

3. When $\theta \geq 1, f(\theta)=\theta x-\infty$,

$$
\sup _{1 \leq \theta<\infty}\{f(\theta)\}=-\infty \quad \text { for all }-\infty<x<+\infty
$$

Therefore we derive when $-1<\epsilon \leq 1$,

$$
I(x)= \begin{cases}x-1-\log x, & \text { if } x>\frac{1}{2+\epsilon} \\ \log (2+\epsilon)-(1+\epsilon) x, & \text { if } 0 \leq x<\frac{1}{2+\epsilon} \\ +\infty, & \text { if } x \leq 0\end{cases}
$$

When $\epsilon=-1$,

$$
I(x)= \begin{cases}x-1-\log x, & \text { if } x>0 \\ +\infty, & \text { if } x \leq 0\end{cases}
$$

We can see that when and only when $\epsilon=0$, the GCF_{ϵ} has the same large deviation principle with the Engel expansion; and when $\epsilon=-1$ the GCF_{ϵ} has the same large deviation principle with Modified ECF expansion and Sylvesters series (see [3] and [9]).

Acknowledgement. This work is supported by the National Natural Science Foundation of China (11361025).

References

[1] A. Dembo and O. Zeitouni, Large Deviations Techniquesand Applications, SpringerVerlag, 2nd Edition, New York, 1998.
2] P. Erdös, A. Rényi, and P. Szüsz, On Engel's and Sylvester's series, Ann. Univ. Sci. Budapest. Eötvös. Sect. Math. 1 (1958), 7-32.
[3] L. L. Fang, Large and moderate deviations for modified Engel continued fractions, Statist. Probab. Lett. 98 (2015), 98-106.
[4] F. Schweiger, Continued fraction with increasing digits, Öster Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II. 212 (2003), 69-77.
[5] L. M. Shen and Y. Zhou, Some metric properties on the GCF fraction expansion, J. Number Theory 130 (2010), no. 1, 1-9.
[6] S. R. S. Varadhan, Large Deviations and Applications, SIAM, Philadelphia, 1984.
[7] T. Zhong, Metrical properties for a class of continued fractions with increasing digits, J. Number Theory 128 (2008), no. 6, 1506-1515.
[8] T. Zhong, Q. W. Mu, and L. M. Shen, Metrical property for $G C F_{\epsilon}$ expansion with the parameter function $\epsilon(k)=c(k+1)$, Int. J. Number Theory 11 (2015), no. 7, 2065-2072.
[9] L. J. Zhu, On the large deviations for Engel's, Sylvester's series and Cantor's products, Electron. Commun. Probab. 19 (2014), no. 2, 1-9.

Ting Zhong
Department of Mathematics
Jishou University
Zhangjiajie, 427000, P. R. China
E-mail address: zhongtingjsu@aliyun.com

[^0]: Received April 22, 2016.
 2010 Mathematics Subject Classification. 60F10, 11A67, 11K55.
 Key words and phrases. large deviation principle, GCF_{ϵ} algorithm, parameter function $\epsilon(k)$.

