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ON THE LARGE DEVIATION FOR THE GCFǫ EXPANSION

WHEN THE PARAMETER ǫ ∈ [−1, 1]

Ting Zhong

Abstract. The GCFǫ expansion is a new class of continued fractions
induced by the transformation Tǫ : (0, 1] → (0, 1]:

Tǫ(x) =
−1 + (k + 1)x

1 + k − kǫx
for x ∈

(

1/(k + 1), 1/k
]

.

Under the algorithm Tǫ, every x ∈ (0, 1] corresponds to an increasing dig-
its sequences {kn, n ≥ 1}. Their basic properties, including the ergodic
properties, law of large number and central limit theorem have been dis-
cussed in [4], [5] and [7]. In this paper, we study the large deviation for

the GCFǫ expansion and show that:
{

1
n
log kn, n ≥ 1

}

satisfies the dif-

ferent large deviation principles when the parameter ǫ changes in [−1, 1],
which generalizes a result of L. J. Zhu [9] who considered a case when
ǫ(k) ≡ 0 (i.e., Engel series).

1. Introduction

Let ǫ : N → R be a parameter function satisfying the condition ǫ(k)+k+1 >
0 and let Tǫ : (0, 1] → (0, 1] be a transformation defined by

(1.1) Tǫ(x) :=
−1 + (k + 1)x

1 + ǫ(k)− kǫ(k)x
for x ∈ B(k) := (1/(k + 1), 1/k].

Under the algorithm Tǫ, every x ∈ (0, 1] is attached to an expansion, called
generalized continued fraction (GCFǫ) expansion (see [4]).

For any x ∈ (0, 1], the digits sequences {kn}n≥1 of the GCFǫ expansion is
defined by

(1.2) k1 = k1(x) :=
⌊ 1

x

⌋

, and kn = kn(x) := k1
(

T n−1
ǫ (x)

)

.

Then kn(x) satisfies

(1.3) kn+1(x) ≥ kn(x) for all n ≥ 1.

Received April 22, 2016.
2010 Mathematics Subject Classification. 60F10, 11A67, 11K55.
Key words and phrases. large deviation principle, GCFǫ algorithm, parameter function

ǫ(k).

c©2017 Korean Mathematical Society

835



836 T. ZHONG

It follows from the algorithm (1.1) that

x =
An +BnT

n
ǫ (x)

Cn +DnT n
ǫ (x)

for all n ≥ 1,

where the numbers An, Bn, Cn, Dn are given by the following recursive relations
(see [4] for details):

(1.4)

(

Cn Dn

An Bn

)

=

(

Cn−1 Dn−1

An−1 Bn−1

)(

kn + 1 knǫ(kn)
1 1 + ǫ(kn)

)

, n ≥ 1.

with

(

C0 D0

A0 B0

)

=

(

1 0
0 1

)

,

For any increasing integer vector (k1, . . . , kn), define the nth order cylinder
as follows

B(k1, . . . , kn) = {x ∈ (0, 1] : kj(x) = kj , ∀1 ≤ j ≤ n}.

Since there is a one-to-one correspondence between x ∈ (0, 1] and the non-
decreasing integer sequence (k1, k2, . . . , ), we have [4]

(1.5) P (B(k1, . . . , kn)) =
BnCn −AnDn

Cn(Cnkn +Dn)

and

(1.6) P (B(k1, . . . , kn, kn+1)) =
BnCn −AnDn

(Cnkn+1 +Dn)(Cn(kn+1 + 1) +Dn)
,

where P (·) denotes the usual Lebesgue measure. Moreover, for any 0 ≤ b ≤ 1
kn

,

{x ∈ [0, 1] : ki(x) = ki, 1 ≤ i ≤ n, T n
ǫ (x) ≤ b} =

[An

Cn
,
An +Bnb

Cn +Dnb

]

.

The GCFǫ transformation provides a big class of continued fractions algo-
rithms which extends our knowledge on one-dimensional dynamical systems.
With proper choice of the parameter ǫ, the GCFǫ expansions presented differ-
ent stochastic properties and ergodic properties [4]. Specially, in the case of
−1 < ǫ ≤ 1 and ǫ(k) = ck+c, the metric properties of GCFǫ were derived in [7]
and [8], respectively. the “0-1” law and central limit theorem were studied by
L. Shen and Y. Zhou [5]. In the present paper, we consider the large deviation
for the GCFǫ expansion and show that:

{

1
n log kn, n ≥ 1

}

satisfies the different
large deviation principles when the parameter ǫ changes in ǫ ∈ [−1, 1], which
generalizes a result of L. J. Zhu, [9] who considered a case when ǫ(k) ≡ 0 (i.e.,
Engel series).

Now we introduce the large deviation principles. Let {Xn, n ≥ 1} be a
sequence of the real valued random variables defined on the probability space
(Ω,F , P ). A function I : R → [0,∞] is called a good rate function if it is
lower semi continuous and has compact level sets. We say that the sequence
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{Xn, n ≥ 1} satisfies a large deviation principle with speed n and good rate
function I under P , if for any Borel set Γ, we have

− inf
x∈Γo

I(x) ≤ lim inf
n→∞

1

n
logP (xn ∈ Γ) ≤ lim sup

n→∞

1

n
logP (xn ∈ Γ) ≤ − sup

x∈Γ̄

I(x),

where Γo and Γ̄ denotes the interior and the closure of Γ respectively. For
general theory of the large deviations, we can refer to Dembo and Zeitouni [1]
and Varadhan [6].

In this paper, we denote by (Ω,F , P ) a probability space, where Ω =
(0, 1], F is the Borel σ-algebra on Ω and P denotes the Lebesgue measure
on (Ω,F). And kn(x) always denotes the n-th digit of GCFǫ defined by (1.2);
An, Bn, Cn, Dn the numbers recursively defined by (1.4); and the parameters ǫ
always satisfies −1 ≤ ǫ(k) ≤ 1.

2. Preliminary

In this section, we present some fundamental properties about GCFǫ ex-
pansion for later use. The first lemma concerns the relationships between
An, Bn, Cn, Dn which are recursively defined by (1.4).

Lemma 2.1 ([4, 7]). For all n ≥ 1 we have

(i) Cn = (kn + 1)Cn−1 +Dn−1 > 0, C0 = 1.
(ii) Dn = knǫ(kn)Cn−1 + (1 + ǫ(kn))Dn−1, D0 = 0.
(iii) BnCn −AnDn =

∏n
i=1(ki + 1 + ǫ(ki)) > 0.

(iv) knCn +Dn = (knCn−1 +Dn−1)(kn + 1 + ǫ(kn)).
(v) ǫ(kn)Cn −Dn = ǫ(kn)Cn−1 −Dn−1.

Using this lemma, we can derive the following two lemmas

Lemma 2.2. We have

P (B(1, 1, . . . , 1
︸ ︷︷ ︸

n

)) =

{ 1+ǫ
(2+ǫ)n+ǫ , as −1 < ǫ ≤ 1;
1

n+1 , as ǫ = −1.

Proof. When ki ≡ k and ǫ(k) ≡ ǫ, Lemma 2.1(iii), (iv) and (v) give that

BnCn − AnDn = (k + 1 + ǫ)n,

kCn +Dn = (kC0 +D0)(k + 1 + ǫ)n = k(k + 1 + ǫ)n,

ǫCn −Dn = ǫC0 −D0 = ǫ.

So we have when ki ≡ 1 and ǫ ∈ [−1, 1],

BnCn −AnDn

knCn +Dn
= 1; Cn(1 + ǫ) = (2 + ǫ)n + ǫ.

Then by (1.5), we get when ǫ ∈ (−1, 1],

(2.1) P (B(1, 1, . . . , 1
︸ ︷︷ ︸

n

)) =
1

Cn
=

1 + ǫ

(2 + ǫ)n + ǫ
.
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But when ǫ = −1, the equality Cn(1 + ǫ) = (2 + ǫ)n + ǫ cannot be used, and
ǫCn −Dn = ǫ becomes Cn +Dn = 1. Using Cn +Dn = 1 and Lemma 2.1(i),
we get

Cn = 2Cn−1 +Dn = Cn−1 + 1 = C0 + n = n+ 1.

So when ǫ = −1, we have

(2.2) P (B(1, 1, . . . , 1
︸ ︷︷ ︸

n

)) =
1

Cn
=

1

n+ 1
.

Together (2.1) and (2.2) give the desired result. �

Since the sequence {kn}n≥1 is not a Markov chain, so it’s difficult to get the
exact probability of (kn ≤ N) by using the nice method in [2]. However, the
next lemma can give an estimate of P (kn ≤ N).

Lemma 2.3. For any positive number N > 1, when −1 < ǫ ≤ 1 we have

1 + ǫ

(2 + ǫ)n + ǫ
≤ P

(

kn ≤ N
)

≤ (1 + n)N−1 ·
1 + ǫ

(2 + ǫ)n + ǫ
;

and when ǫ = −1 we have

1

1 + n
≤ P

(

kn ≤ N
)

≤ (1 + n)N−2.

Proof. First we check the number of all the nth order cylinders of (kn = j),
which is denoted by ♯(kn = j). We first show that

(1◦) ♯(kn = 1) = 1.

(2◦) ♯(kn = j) ≤ n · (1 + n)j−2 for all j ≥ 2.

(3◦) ♯(kn ≤ j) ≤ (1 + n)j−1 for all j ≥ 1.

In fact, by the increase of kn ≥ 1, we have kn = 1 = B(1, 1, . . . , 1) contains
only one cylinder, thus (1◦) is true.

Second, we prove (2◦) by induction. Notice that, each cylinder B(k1, . . .,
kn−1, kn) of (kn ≤ j − 1) corresponds to n cylinders of (kn = j) as

B(k1, . . . , kn−1, j), B(k1, . . . , j, j), . . . , B(j, . . . , j, j).

Thus

(kn = j) ≤ n · ♯(kn ≤ j − 1),

here “≤” is actually “<”, because the right side of it contains some double-
counted cylinders.

Then with ♯(kn = 1) = 1, it is obvious that ♯(kn = 2) = n ≤ n · (1 + n)2−2.
So (2◦) is true for j = 2.

Now we suppose that (2◦) is true for all of j ≤ i, then for j = i+ 1,

♯(kn = i+ 1) ≤ n
(

♯(kn = 1) + ♯(kn = 2) + ♯(kn = 3) + · · ·+ ♯(kn = i)
)

≤ n
(

1 + n+ n(1 + n) + n(1 + n)2 + · · ·+ n(1 + n)i−2
)
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= n
(

1 + n+ n(1 + n) ·
1− (1 + n)i−2

1− (1 + n)

)

= n(1 + n)i−1,

which shows that (2◦) is also true for j = i + 1. So (2◦) is proved by math
induction.

Third, (3◦) is follows from (2◦) that,

(2.3) ♯(kn ≤ j) = ♯(kn = 1) + ♯(kn = 2) + · · ·+ ♯(kn = j) ≤ (1 + n)j−1.

Now we can come to estimate P (kn ≤ N). It’s easy to see that,

P (B(k1, k2, . . . , kn)) ≤ P (B(1, 1, . . . , 1)) and

P (B(1, 1, . . . , 1)) ≤ P (kn ≤ N) ≤ ♯(kn ≤ N) · P (B(1, 1, . . . , 1)).

Combining this with (2.3) and Lemma 2.2, we get the desired result. �

In older to overcome the inadequacies of that the sequence {kn, n ≥ 1} is
not a Markov chain, we also need the following lemma.

Lemma 2.4 ([7]). Let yn := Dn

Cn

for all n ≥ 1. Then

−1 < ǫ(k) ≤ 1 ⇒ −1 < yn ≤ 1.

Using this lemma, we can get the following estimate:

Lemma 2.5. The conditional probability P (kn+1 = k|kn = j) satisfies that

(2.4)
j − 1

(k − 1)(k + 2)
< P (kn+1 = k|kn = j) ≤

j + 1

(k + 1)k
.

Proof. From (2.1) and (2.2), we can see that in every cylinder B(k1, . . ., kn−1),

P (kn+1 = k|kn = j) =
P (B(k1, . . . , kn−1, j, k))

P (B(k1, . . . , kn−1, j))

=
Cn(jCn +Dn)

(kCn +Dn)((k + 1)Cn +Dn)

=
(j + yn)

(k + yn)(k + 1 + yn)
, where yn =

Dn

Cn
.

So by −1 < yn ≤ 1 and using the monotone property of j+yn

k+yn

, we get

j − 1

(k − 1)(k + 2)
<

j + yn
(k + yn)(k + yn + 1)

≤
j + 1

(k + 1)k
.

Thus (2.4) is proved. �

Further, we have:

Lemma 2.6. Let N = max{ 2−θ
δ , 2δ } and θ < 1. Then for all j ≥ N , we have:

1− δ

1− θ
≤

∑

k≥j

(k

j

)θ

P (kn+1 = k|kn = j) ≤
1 + δ

1− θ
.
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Proof. From (2.4) we have,

∑

k≥j

(k

j

)θ

P (kn+1 = k|kn = j) ≤
1

j
+

∑

k≥j+1

( kθ

k(k + 1)

)

·
j + 1

jθ

≤
1

j
+

j + 1

jθ

∑

k≥j+1

1

k2−θ

≤
1

j
+

j + 1

jθ

∫ ∞

j

1

x2−θ
dx

=
1

j
+

j + 1

jθ
jθ−1

1− θ
=

2 + j − θ

j

1

1− θ

≤
1 + δ

1− θ
for j ≥

2− θ

δ
.

And
∑

k≥j

(k

j

)θ

P (kn+1 = k|kn = j) ≥
j − 1

jθ

∑

k≥j

kθ

(k + 2)(k − 1)

≥
j − 1

jθ

∑

k≥j

kθ−2 k

k + 1

≥
j − 1

jθ
j

j + 1

∫ ∞

j

1

x2−θ
dx

=
j − 1

j + 1

1

1− θ
≥

1− δ

1− θ
for j ≥

2

δ
.

�

3. Proof of the main result

Before we go to the statement and proof of the large deviations result for
GCFǫ expansions, let us first state and prove the following lemma.

Lemma 3.1. Let {kn, n ≥ 1} be the digits sequence of GCFǫ expansion. Then

in the case of −1 < ǫ ≤ 1,

lim
n→∞

1

n
logE

(

kθn
)

=

{

+∞, when θ ≥ 1,
max

{

log 1
2+ǫ , log 1

1−θ

}

when θ < 1;

and in the case of ǫ = −1,

lim
n→∞

1

n
logE

(

kθn
)

=

{

+∞, when θ ≥ 1,
log 1

1−θ when θ < 1.

Proof. First, for any θ ≥ 1, from (1.4) and (1.5) we get P (k1 = k)= B1C1−A1D1

C1(k1C1+D1)

= 1
k(k+1) , then by kn ≥ k1 we have

E
(

eθ log kn

)

= E
(

kθn
)

≥ E
(

kθ1
)

=

∞
∑

k=1

1

k(k + 1)
kθ = +∞.
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Next, for any θ < 1, we divide the average into two terms:

(3.1)
∞
∑

k=1

P (kn = k)kθ =
N−1
∑

k=1

P (kn = k)kθ +
∞
∑

k=N

P (kn = k)kθ,

and prove the results when −1 < ǫ ≤ 1 and ǫ = −1, respectively.
Part 1: In the case of θ < 1 and −1 < ǫ ≤ 1:
(1) Lower bound
For the first term in the sum of (3.1), it follows from (2.1) that

(3.2)

N−1
∑

k=1

P (kn = k)kθ ≥ P (kn = 1) · 1θ = P (B(1, 1, . . . , 1
︸ ︷︷ ︸

n

)) =
1 + ǫ

(2 + ǫ)n + ǫ
.

For the second term in the sum of (3.1), it is clear that
∞
∑

k=N

P (kn = k)kθ ≥

∞
∑

j=N

P (kn−1 = j)jθ
∞
∑

k=j

P (kn = k|kn−1 = j) ·
(k

j

)θ

.

Then by Lemma 2.6, we get a recursive relation:
∞
∑

k=N

P (kn = k)kθ ≥
(1− δ

1− θ

)

∞
∑

j=N

P (kn−1 = j)jθ.

Iterating this process n− 1 times until we get that
∞
∑

k=N

P (kn = k)kθ ≥
(1− δ

1− θ

)n−1 ∞
∑

j=N

P (k1 = j)jθ.

And from (1.4) and (1.5) we have, for θ < 1,

(3.3)

∞
∑

j=N

P (k1 = j)jθ =

∞
∑

j=N

jθ

j(j + 1)
=: M (convergent).

So we have

(3.4)

∞
∑

k=N

P (kn = k)kθ ≥
(1− δ

1− θ

)n−1 ∞
∑

j=N

P (k1 = j)jθ = M
(1− δ

1− θ

)n−1

.

Then we get that from (3.2) and (3.4)

∞
∑

k=1

P (kn = k)kθ ≥ max
{

N
∑

k=1

P (kn = k)kθ,

∞
∑

k=N

P (kn = k)kθ
}

≥ max
{ 1 + ǫ

(2 + ǫ)n + ǫ
, M

(1− δ

1− θ

)n−1}

.

As a consequence,

lim inf
n→∞

1

n
log

(

∞
∑

k=N

P (kn = k)kθ
)

≥ max
{

log
1

2 + ǫ
, log

1 + δ

1− θ

}

.
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Since δ > 0 is arbitrary, we get

(3.5) lim inf
n→∞

1

n
logE

(

eθ log kn

)

≥ max
{

log
1

2 + ǫ
, log

1

1− θ

}

,

which gives the lower bound of lim infn→∞
1
n logE

(

eθ log kn

)

when −1 < ǫ ≤ 1
and θ < 1.

(2) Upper bound
For the first term in the sum of (3.1), it follows from Lemma 2.3 that,

N−1
∑

k=1

P (kn = k)kθ ≤ P (kn ≤ N)Nθ

≤ (1 + n)N−1 ·
1 + ǫ

(2 + ǫ)n + ǫ
Nθ ≤

2(1 + n)NNθ

(2 + ǫ)n
.(3.6)

For the second term in the sum of (3.1), it is also can be divided into the
sum of the two terms:

∞
∑

k=N

P (kn = k)kθ =

∞
∑

j=N

P (kn−1 = j)jθ
∞
∑

k=j

P (kn = k|kn−1 = j)
(k

j

)θ

+
N
∑

j=1

P (kn−1 = j)jθ
∞
∑

k=N

P (kn = k|kn−1 = j)
(k

j

)θ

.

By Lemma 2.6 and Lemma 2.3, we have for −1 < ǫ ≤ 1,

∞
∑

k=N

P (kn = k)kθ ≤
1 + δ

1− θ

(

∞
∑

j=N

P (kn−1 = j)jθ +

N
∑

j=1

P (kn−1 = j)jθ
)

≤
1 + δ

1− θ

(

∞
∑

k=N

P (kn−1 = k)kθ +
2nN−1

(2 + ǫ)n−1

)

.

Iterate this process n− 1 times to get

(3.7)

∞
∑

k=N

P (kn = k)kθ

≤
(1 + δ

1− θ

)n−1 ∞
∑

k=N

P (k1 = k)kθ + 2nN−2
n−1
∑

i=1

(1 + δ

1− θ

)i( 1

2 + ǫ

)n−i

,

where the geometric series

(3.8)
n−1
∑

i=1

(1 + δ

1− θ

)i( 1

2 + ǫ

)n−i

= O

(

( 1

2 + ǫ

)n−1

−
(1 + δ

1− θ

)n−1
)

.

Substituting (3.8) and (3.3) into (3.7), and combining with (3.6), we get
∞
∑

k=1

P (kn = k)kθ ≤ 2nN−2M1

(1 + δ

1− θ

)n−1

+ (1 + n)NM2

( 1

2 + ǫ

)n−1

,
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where M1 and M2 are two positive constants.
Therefore,

lim sup
n→∞

1

n
logE

(

eθ log kn

)

≤ lim sup
n→∞

1

n
log

(

2nN−2M1

(1 + δ

1− θ

)n−1

+ 2(1 + n)N−2M2

( 1

2 + ǫ

)n−1)

≤ max
{

log
1 + δ

1− θ
, log

1

2 + ǫ

}

.

Since δ > 0 is arbitrary, we get

lim
n→∞

1

n
logE

(

eθ log kn

)

≤ max
{

log
1

2 + ǫ
, log

1

1− θ

}

,

which gives the upper bound of limn→∞
1
n logE

(

eθ log kn

)

when −1 < ǫ ≤ 1
and θ < 1.

Combining this upper bound and the lower: (3.5), we obtain when θ < 1
and −1 < ǫ ≤ 1,

lim
n→∞

1

n
logE

(

eθ log kn

)

= max
{

log
1

2 + ǫ
, log

1

1− θ

}

.

Part 2: In the case of θ < 1 and ǫ = −1:
For the first term in the sum of (3.1), Lemma 2.3 gives that

1

1 + n
(N − 1)θ ≤

N−1
∑

k=1

P (kn = k)kθ ≤ (1 + n)N−2(N − 1)θ.

As a consequence,

lim
n→∞

1

n
log

(

N−1
∑

k=1

P (kn = k)kθ
)

= 0.

So the result of limn→∞
1
n logE

(

eθ log kn

)

only depends on the second term in
the sum of (3.1). So long as we instead using (2.1) by using (2.2) in the proof
for the case of −1 < ǫ ≤ 1, by the same proof method, we can get that when
θ < 1 and ǫ = −1,

lim
n→∞

1

n
logE

(

kθn
)

= log
1

1− θ
. �

Now we can prove the following:

Theorem 3.2. Let {kn}n≥1 be the digits sequence of the GCFǫ expansion.

Then
{

1
n log kn, n ≥ 1

}

satisfy the large deviation principle with speed n and

good rate function I(x) as

1. In the case of −1 < ǫ < 1,

I(x) =







x− 1− log x, if x > 1
2+ǫ

log(2 + ǫ)− (1 + ǫ)x, if 0 ≤ x < 1
2+ǫ

+∞, if x ≤ 0.
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2. In the case of ǫ = −1,

I(x) =

{

x− 1− log x, if x > 0
+∞, if x ≤ 0

under P .

Proof. Lemma 3.2 actually gives that
When −1 < ǫ ≤ 1,

lim
n→∞

1

n
logE

(

eθ log kn

)

=







+∞, when θ ≥ 1;
log 1

1−θ when −1− ǫ ≤ θ < 1;

log 1
2+ǫ when θ < −1− ǫ.

When ǫ = −1,

lim
n→∞

1

n
logE

(

eθ log kn

)

=

{

+∞, when θ ≥ 1;
log 1

1−θ when θ < 1.

By Gartner-Ellis theorem (see e.g. Dembo and Zeitouni [1]),
{

1
n log kn, n ≥

1
}

satisfies a large deviation principle with rate function

I(x) = sup
θ∈R

{θx− Γ(θ)},

where Γ(θ) := 1
n logE

(

eθ log kn

)

exists. Let f(θ) = θx − Γ(θ), then
1. When θ < −1− ǫ, f(θ) = θx + log(2 + ǫ),

sup
θ<−1−ǫ

{f(θ)} =

{

f(−1− ǫ) = −(1 + ǫ)x+ log(2 + ǫ), if x > 0
f(−∞) = limθ→−∞ θx + log(2 + ǫ) = +∞, if x < 0.

2. When −1 − ǫ ≤ θ < 1, f(θ) = θx + log(1 − θ) has maximum points:
θ = 1− 1

x . Notice that −1− ǫ ≤ θ < 1 and θ = 1− 1
x ⇒ x ≥ 1

2+ǫ , so we have

sup
−1−ǫ≤θ<1

{f(θ)} = f
(

1−
1

x

)

= x− 1− log x for all x ≥
1

2 + ǫ
.

3. When θ ≥ 1, f(θ) = θx−∞,

sup
1≤θ<∞

{f(θ)} = −∞ for all −∞ < x < +∞.

Therefore we derive when −1 < ǫ ≤ 1,

I(x) =







x− 1− log x, if x > 1
2+ǫ

log(2 + ǫ)− (1 + ǫ)x, if 0 ≤ x < 1
2+ǫ

+∞, if x ≤ 0.

When ǫ = −1,

I(x) =

{

x− 1− log x, if x > 0
+∞, if x ≤ 0. �
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We can see that when and only when ǫ = 0, the GCFǫ has the same large
deviation principle with the Engel expansion; and when ǫ = −1 the GCFǫ has
the same large deviation principle with Modified ECF expansion and Sylvesters
series (see [3] and [9]).
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Budapest. Eötvös. Sect. Math. 1 (1958), 7–32.

[3] L. L. Fang, Large and moderate deviations for modified Engel continued fractions,
Statist. Probab. Lett. 98 (2015), 98–106.

[4] F. Schweiger, Continued fraction with increasing digits, Öster Akad. Wiss. Math.-Natur.
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