• Title/Summary/Keyword: erase operation

Search Result 78, Processing Time 0.027 seconds

A Novel Memory Hierarchy for Flash Memory Based Storage Systems

  • Yim, Keno-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.262-269
    • /
    • 2005
  • Semiconductor scientists and engineers ideally desire the faster but the cheaper non-volatile memory devices. In practice, no single device satisfies this desire because a faster device is expensive and a cheaper is slow. Therefore, in this paper, we use heterogeneous non-volatile memories and construct an efficient hierarchy for them. First, a small RAM device (e.g., MRAM, FRAM, and PRAM) is used as a write buffer of flash memory devices. Since the buffer is faster and does not have an erase operation, write can be done quickly in the buffer, making the write latency short. Also, if a write is requested to a data stored in the buffer, the write is directly processed in the buffer, reducing one write operation to flash storages. Second, we use many types of flash memories (e.g., SLC and MLC flash memories) in order to reduce the overall storage cost. Specifically, write requests are classified into two types, hot and cold, where hot data is vulnerable to be modified in the near future. Only hot data is stored in the faster SLC flash, while the cold is kept in slower MLC flash or NOR flash. The evaluation results show that the proposed hierarchy is effective at improving the access time of flash memory storages in a cost-effective manner thanks to the locality in memory accesses.

Design of MTP memory IP using vertical PIP capacitor (Vertical PIP 커패시터를 이용한 MTP 메모리 IP 설계)

  • Kim, Young-Hee;Cha, Jae-Han;Jin, Hongzhou;Lee, Do-Gyu;Ha, Pan-Bong;Park, Mu-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.48-57
    • /
    • 2020
  • MCU used in applications such as wireless chargers and USB type-C require MTP memory with a small cell size and a small additional process mask. Conventional double poly EEPROM cells are small in size, but additional processing masks of about 3 to 5 sheets are required, and FN tunneling type single poly EEPROM cells have a large cell size. In this paper, a 110nm MTP cell using a vertical PIP capacitor is proposed. The erase operation of the proposed MTP cell uses FN tunneling between FG and EG, and the program operation uses CHEI injection method, which reduces the MTP cell size to 1.09㎛2 by sharing the PW of the MTP cell array. Meanwhile, MTP memory IP required for applications such as USB type-C needs to operate over a wide voltage range of 2.5V to 5.5V. However, the pumping current of the VPP charge pump is the lowest when the VCC voltage is the minimum 2.5V, while the ripple voltage is large when the VCC voltage is 5.5V. Therefore, in this paper, the VPP ripple voltage is reduced to within 0.19V through SPICE simulation because the pumping current is suppressed to 474.6㎂ even when VCC is increased by controlling the number of charge pumps turned on by using the VCC detector circuit.

A Study on the Discharge Characteristics of High Speed Addressing for the HDTV Class Plasma Display (HDTV급 플라즈마 디스플레이의 고속 어드레스 방전특성에 관한 연구)

  • 염정덕
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.1
    • /
    • pp.13-21
    • /
    • 2001
  • The discharge characteristics of 3 electrcdes AC surface discharge plasma display were analyzed. For an unstable state of the discharge which appeared at the maximum discharge voltage, it is found that a parbal erase of the wall charge by the second discharge is a cause. Based on the second discharge, new operation margin considering the interrelation between the address discharge and the display discharge was defined and the validity of it was verified by the experiments. It is necessary to decrease the acklress pulse width for high-speed addressing. However, the operation margin of the ackIress pulse decreases as the pulse width of it becomes narrower. If the address pulse width is wider than l[ps], the operation margin of the display discharge is not related to the address pulse width. From the experimental result, image or 8bit 253 gray level was displayed on PDP with the cell structure of the HDTV class by using the high-speed address ADS drive methcd with pulse width of $1[{\mu}s]$ and the brightness of $560[cd/m^2]$ was obtained. ained.

  • PDF

An Offline FTL Algorithm to Verify the Endurance of Flash SSD (플래시 SSD의 내구성을 검증하기 위한 FTL 오프라인 알고리즘)

  • Jung, Ho-Young;Lee, Tae-Hwa;Cha, Jae-Hyuk
    • Journal of Digital Contents Society
    • /
    • v.13 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • SSDs(Solid State Drives) have many attractive features such as high performance, low power consumption, shock resistance, and low weight, so they replace HDDs to a certain extent. An SSD has FTL(Flash Translation Layer) which emulate block storage devices like HDDs. A garbage collection, one of major functions of FTL, effects highly on the performance and the lifetime of SSDs. However, there is no de facto standard for new garbage collection algorithms. To solve this problem, we propose trace driven offline optimal algorithms for garbage collection of FTL. The proposed algorithm always guarantees minimal number of erase operation. In addition, we verify our proposed algorithm using TPC trace.

Garbage Collection Technique for Balanced Wear-out and Durability Enhancement with Solid State Drive on Storage Systems

  • Kim, Sungho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.4
    • /
    • pp.25-32
    • /
    • 2017
  • Recently, the use of NAND flash memory is being increased as a secondary device to displace conventional magnetic disk. NAND flash memory, as one among non-volatile memories, has many advantages such as low power, high reliability, low access latency, and so on. However, NAND flash memory has disadvantages such as erase-before-write, unbalanced operation speed, and limited P/E cycles, unlike conventional magnetic disk. To solve these problems, NAND flash memory mainly adopted FTL (Flash Translation Layer). In particular, garbage collection technique in FTL tried to improve the system lifetime. However, previous garbage collection techniques have a sensitive property of the system lifetime according to write pattern. To solve this problem, we propose BSGC (Balanced Selection-based Garbage Collection) technique. BSGC efficiently selects a victim block using all intervals from the past information to the current information. In this work, SFL (Search First linked List), as the proposed block allocation policy, prolongs the system lifetime additionally. In our experiments, SFL and BSGC prolonged the system lifetime about 12.85% on average and reduced page migrations about 22.12% on average. Moreover, SFL and BSGC reduced the average response time of 16.88% on average.

The Short Channel Effect Immunity of Silicon Nanowire SONOS Flash Memory Using TCAD Simulation

  • Yang, Seung-Dong;Oh, Jae-Sub;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Lee, Sang Youl;Lee, Hi-Deok;Lee, Ga-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.139-142
    • /
    • 2013
  • Silicon nanowire (SiNW) silicon-oxide-nitride-oxide-silicon (SONOS) flash memory devices were fabricated and their electrical characteristics were analyzed. Compared to planar SONOS devices, these SiNW SONOS devices have good program/erase (P/E) characteristics and a large threshold voltage ($V_T$) shift of 2.5 V in 1ms using a gate pulse of +14 V. The devices also show excellent immunity to short channel effects (SCEs) due to enhanced gate controllability, which becomes more apparent as the nanowire width decreases. This is attributed to the fully depleted mode operation as the nanowire becomes narrower. 3D TCAD simulations of both devices show that the electric field of the junction area is significantly reduced in the SiNW structure.

Nonvolatile Memory and Photovoltaic Devices Using Nanoparticles

  • Kim, Eun Kyu;Lee, Dong Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.79-79
    • /
    • 2013
  • Quantum-structures with nanoparticles have been attractive for various electronic and photonic devices [1,2]. In recent, nonvolatile memories such as nano-floating gate memory (NFGM) and resistance random access memory (ReRAM) have been studied using silicides, metals, and metal oxides nanoparticles [3,4]. In this study, we fabricated nonvolatile memories with silicides (WSi2, Ti2Si, V2Si) and metal-oxide (Cu2O, Fe2O3, ZnO, SnO2, In2O3 and etc.) nanoparticles embedded in polyimide matrix, and photovoltaic device also with SiC nanoparticles. The capacitance-voltageand current-voltage data showed a threshold voltage shift as a function of write/erase voltage, which implies the carrier charging and discharging into the metal-oxide nanoparticles. We have investigated also the electrical properties of ReRAM consisted with the nanoparticles embedded in ZnO, SiO2, polyimide layer on the monolayered graphene. We will discuss what the current bistability of the nanoparticle ReRAM with monolayered graphene, which occurred as a result of fully functional operation of the nonvolatile memory device. A photovoltaic device structure with nanoparticles was fabricated and its optical properties were also studied by photoluminescence and UV-Vis absorption measurements. We will discuss a feasibility of nanoparticles to application of nonvolatile memories and photovoltaic devices.

  • PDF

Fabrication and Device Performance of Tera Bit Level Nano-scaled SONOS Flash Memories (테라비트급 나노 스케일 SONOS 플래시 메모리 제작 및 소자 특성 평가)

  • Kim, Joo-Yeon;Kim, Moon-Kyung;Kim, Byung-Cheul;Kim, Jung-Woo;Seo, Kwang-Yell
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1017-1021
    • /
    • 2007
  • To implement tera bit level non-volatile memories of low power and fast operation, proving statistical reproductivity and satisfying reliabilities at the nano-scale are a key challenge. We fabricate the charge trapping nano scaled SONOS unit memories and 64 bit flash arrays and evaluate reliability and performance of them. In case of the dielectric stack thickness of 4.5 /9.3 /6.5 nm with the channel width and length of 34 nm and 31nm respectively, the device has about 3.5 V threshold voltage shift with write voltage of $10\;{\mu}s$, 15 V and erase voltage of 10 ms, -15 V. And retention and endurance characteristics are above 10 years and $10^5$ cycle, respectively. The device with LDD(Lightly Doped Drain) process shows reduction of short channel effect and GIDL(Gate Induced Drain Leakage) current. Moreover we investigate three different types of flash memory arrays.

Container-Based Record Management in Flash Memory Environment (플래시 메모리 환경을 위한 컨테이너 기반 레코드 관리 방법)

  • Bae, Duck-Ho;Kim, Sang-Wook;Chang, Ji-Woong
    • Journal of KIISE:Databases
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Flash memory has its unique characteristics: i.e., (1) the write operation is much more costly than the read operation. (2) In-place updating is not allowed. In this paper, we first analyze how these characteristics affect the performance of record management in flash memory, and discuss the problems with previous methods for record management when they are applied to flash memory environment. Next, we propose a new record management method to be suitable for flash memory environment. The proposed method employs a new concept of a container that makes it possible to overwrite data on flash memory several times when performing insertions, deletions, and modifications of records. As a result, this method reduces the number of overwrite operations, and consequently does the number of erase operations. The results of experiments show that our method improves the performance by up to 34%, compared with the previous one.

Trap characteristics of charge trap type NVSM with reoxidized nitrided oxide gate dielectrics (재산화 질화산화 게이트 유전막을 갖는 전하트랩형 비휘발성 기억소자의 트랩특성)

  • 홍순혁;서광열
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.304-310
    • /
    • 2002
  • Novel charge trap type memory devices with reoxidized oxynitride gate dielectrics made by NO annealing and reoxidation process of initial oxide on substrate have been fabricated using 0.35 $\mu \textrm{m}$ retrograde twin well CMOS process. The feasibility for application as NVSM memory device and characteristics of traps have been investigated. For the fabrication of gate dielectric, initial oxide layer was grown by wet oxidation at $800^{\circ}C$ and it was reoxidized by wet oxidation at $800^{\circ}C$ after NO annealing to form the nitride layer for charge trap region for 30 minutes at $850^{\circ}C$. The programming conditions are possible in 11 V, 500 $\mu \textrm{s}$ for program and -13 V, 1ms for erase operation. The maximum memory window is 2.28 V. The retention is over 20 years in program state and about 28 hours in erase state, and the endurance is over $3 \times 10^3$P/E cycles. The lateral distributions of interface trap density and memory trap density have been determined by the single junction charge pumping technique. The maximum interface trap density and memory trap density are $4.5 \times 10^{10} \textrm{cm}^2$ and $3.7\times 10^{18}/\textrm{cm}^3$ respectively. After $10^3$ P/E cycles, interlace trap density increases to $2.3\times 10^{12} \textrm{cm}^2$ but memory charges decreases.