Browse > Article
http://dx.doi.org/10.4313/TEEM.2013.14.3.139

The Short Channel Effect Immunity of Silicon Nanowire SONOS Flash Memory Using TCAD Simulation  

Yang, Seung-Dong (Department of Electronics Engineering, Chungnam National University)
Oh, Jae-Sub (Department of Electronics Engineering, Chungnam National University)
Yun, Ho-Jin (Department of Electronics Engineering, Chungnam National University)
Jeong, Kwang-Seok (Department of Electronics Engineering, Chungnam National University)
Kim, Yu-Mi (Department of Electronics Engineering, Chungnam National University)
Lee, Sang Youl (Department of Electronics Engineering, Chungnam National University)
Lee, Hi-Deok (Department of Electronics Engineering, Chungnam National University)
Lee, Ga-Won (Department of Electronics Engineering, Chungnam National University)
Publication Information
Transactions on Electrical and Electronic Materials / v.14, no.3, 2013 , pp. 139-142 More about this Journal
Abstract
Silicon nanowire (SiNW) silicon-oxide-nitride-oxide-silicon (SONOS) flash memory devices were fabricated and their electrical characteristics were analyzed. Compared to planar SONOS devices, these SiNW SONOS devices have good program/erase (P/E) characteristics and a large threshold voltage ($V_T$) shift of 2.5 V in 1ms using a gate pulse of +14 V. The devices also show excellent immunity to short channel effects (SCEs) due to enhanced gate controllability, which becomes more apparent as the nanowire width decreases. This is attributed to the fully depleted mode operation as the nanowire becomes narrower. 3D TCAD simulations of both devices show that the electric field of the junction area is significantly reduced in the SiNW structure.
Keywords
SiNW; SONOS flash memory; DIBL; TCAD simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Shin, VLSI Circuits, Symposium on VLSI Symp. Tech. Dig., pp.156-159 (2005) DOI: 10.1109/VLSIC.2005.1469355.   DOI
2 Y. Yang, M. H. White, Solid-State Elec., Vol. 44, pp. 949-958 (2000) [DOI: http://dx.doi.org/10.1016/S0038-1101(00)00012-5].   DOI   ScienceOn
3 Tzu-Hsuan Hsu, Hang-Ting Lue, and Chih-Yuan Lu, VLSI Circuits, Symposium on VLSI Symp. Tech. Dig., pp. 154-155 (2009) [DOI: http://dx.doi.org/10.1109/VTSA.2009.5159336].   DOI
4 Y. Cui, Z. Zhong, D. Wang, W. Wang, and C. M. Lieber, Nano Lett., vol. 3, no. 2, pp. 149.152, (2003) [DOI: http://dx.doi.org/10.1021/nl025875l].   DOI   ScienceOn
5 F.-L. Yang, D. H. Lee, H. Y. Chen, and C. Hu, VLSI Symp. Tech. Dig., 2004, pp. 196.197 [DOI: http://dx.doi.org/10.1109/VLSIT.2004.1345476].   DOI
6 S. D. Suk, S.-Y. Lee, S.-M. Kim, and B.-I. Ryu, IEDM Tech. Dig., 2005, pp. 717.720 [DOI: http://dx.doi.org/10.1109/IEDM.2005.1609453].   DOI
7 K. H. Yeo, S. D. Suk, M. Li, and B.-I. Ryu, IEDM Tech. Dig., 2006, pp. 539.542 [DOI: http://dx.doi.org/10.1109/IEDM.2006.346838].   DOI
8 Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. Cambridge, U.K.: Cambridge Univ. Press, (1998).
9 K. Asano, Y.-K. Choi, T.-J. King, and C. Hu, IEEE Trans. Electron Devices, vol. 48, no. 5, pp. 1004.1006, May (2001) [DOI: http://dx.doi.org/10.1109/16.918251].   DOI   ScienceOn
10 R. M. Y. Ng, T. Wang, F. Liu, X. Zuo, J. He, and M. Chan, IEEE Electron Device Lett., vol. 30, no. 5, pp. 520.522, May (2009) [DOI: http://dx.doi.org/10.1109/LED.2009.2014975].   DOI   ScienceOn
11 S. Bangsaruntip, G. M. Cohen, A. Majumdar, and J. W. Sleight, IEEE Electron Device Lett., vol. 31, no. 9, pp. 903-905, Sep (2010) [DOI: http://dx.doi.org/10.1109/LED.2010.2052231].   DOI   ScienceOn