• Title/Summary/Keyword: equivalent circuit model

Search Result 650, Processing Time 0.025 seconds

A Study on the Off-Line Parameter Estimation for Sensorless 3-Phase Induction Motor using the D-Axis Model in Stationary Frame (정지좌표계 d축 모델을 이용한 위치센서 없는 3상 유도전동기의 오프라인 제정수 추정에 관한 연구)

  • Mun, Tae-Yang;In, Chi-Gak;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • Accurate parameters based on equivalent circuit are required for high-performance field-oriented control in a three-phase induction motor. In a normal case, stator resistance can be accurately measured using a measuring equipment. Except for stator resistance, all machine parameters on the equivalent circuit should be estimated with particular algorithms. In the viewpoint of traditional regions, the parameters of an induction motor can be identified through the no-load and standstill test. This study proposes an identification method that uses the d-axis model of the induction motor in a stationary frame with the predefined information on stator resistance. Mutual inductance is estimated on the rotational dq coordination similar to that in the traditional no-load experiment test. The leakage inductance and rotor resistance can be estimated simply by applying different voltages and frequencies in the d-axis model of the induction motor. The proposed method is verified through simulation and experimental results.

Transmission Characteristics & Analysis of Ignition Voltage According to Its Conductor Length from the Ballast to the HID Lamp (HID램프와 안정기 사이의 전선 길이에 따른 이그니션 전압 전달특성 분석)

  • Bang, Sun-Bae;Kim, Chong-Min;Han, Woon-Ki;Im, Byeong-No;Jang, Mog-Soon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.3
    • /
    • pp.148-154
    • /
    • 2007
  • In this paper, characteristics of ignition voltage and current by wire length of HID(High Intensity Discharge) lamp circuit are analyzed. In the construction field, decision of the wire thickness for HID lamp circuit has the problems, and these are presented. Through transmit parameters, equivalent model of the ballast and HID lamp circuit was derived. The graph of voltage reduction about length between the ballast and the lamp is shown. The simulation of proposed model and experimental results are presented in order to validate the proposed method. The proposed model and graph can use to choose the proper length of wire between the ballast and the lamp in the field.

A Circuit Model of the Dielectric Relaxation of the High Dielectric $(Ba,Sr)Tio_3$ Thin Film Capacitor for Giga-Bit Scale DRAMs (Giga-Bit급 DRAM을 위한 고유전 $(Ba,Sr)Tio_3$박막 커패시터의 유전완화 특성에 대한 회로 모델)

  • Jang, Byeong-Tak;Cha, Seon-Yong;Lee, Hui-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.15-24
    • /
    • 2000
  • The dielectric relaxation of high-dielectric capacitors could be understood as a dynamic property of the capacitor in the time domain, which is regarded as a primarily important charge loss mechanism during the refresh time of DRAMs. Therefore, the equivalent circuit of the dielectric relaxation of the high-dielectric capacitor is essentially required to investigate its effects on DRAM. Nevertheless, There is not any theoretical method which is generally applied to realize the equivalent circuit of the dielectric relaxation. Recently, we have developed a novel procedure for the circuit modeling of the dielectric relaxation of high-dielectric capacitor utilizing the frequency domain. This procedure is a general method based on theoretical approach. We have also verified the feasibility of this procedure through experimental process. Finally, we successfully investigated the effect of dielectric relaxation on DRAM operation with the obtained equivalent circuit through this new method.

  • PDF

Frequency-Domain Circuit Model and Analysis of Coupled Magnetic Resonance Systems

  • Huh, Jin;Lee, Wooyoung;Choi, Suyong;Cho, Gyuhyeong;Rim, Chuntaek
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.275-286
    • /
    • 2013
  • An explicit frequency-domain circuit model for the conventional coupled magnetic resonance system (CMRS) is newly proposed in this paper. Detail circuit parameters such as the leakage inductances, magnetizing inductances, turn-ratios, internal coil resistances, and source/load resistances are explicitly included in the model. Accurate overall system efficiency, DC gain, and key design parameters are deduced from the model in closed form equations, which were not available in previous works. It has been found that the CMRS can be simply described by an equivalent voltage source, resistances, and ideal transformers when it is resonated to a specified frequency in the steady state. It has been identified that the voltage gain of the CMRS was saturated to a specific value although the source side or the load side coils were strongly coupled. The phase differences between adjacent coils were ${\pi}/2$, which should be considered for the EMF cancellations. The analysis results were verified by simulations and experiments. A detailed circuit-parameter-based model was verified by experiments for 500 kHz by using a new experimental kit with a class-E inverter. The experiments showed a transfer of 1.38 W and a 40 % coil to coil efficiency.

Analysis and Design of Integrated Magnetic Circuit for Phase Shift Full Bridge Converter (위상천이 풀-브릿지 컨버터를 위한 Integrated Magnetic 회로 설계 및 해석)

  • Jang, Eun-Sung;Li, Xin-Lan;Shin, Yong-Whan;Heo, Tae-Won;Kim, Don-Sik;Lee, Hyo-Bum;Shin, Hwi-Beom
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.406-409
    • /
    • 2008
  • This paper presents the integrated magnetic circuit designing method for phase shift full bridge(PSFB) converter. The integrated magnetic circuit is implemented on redesigned of EI core. The transformer windings are located on center leg and the two inductors are located on the outer legs with air gap. Based on the equivalent circuit model, the principle of operation of the PSFB converter is explained. The operation and performance of the proposed circuit are verified on a 1.2 kW prototype converter. The analysis and design of the integrated magnetic circuit is verified through the experimental and simulation results.

  • PDF

Modeling of an Inductive Position Sensing System based on a Magnetic Circuit and its Analysis (자기 회로를 이용한 인덕턴스형 변위 측정 시스템의 모델링 및 해석)

  • Choi, Dong-June;Rim, Chun-Taek;Kim, Su-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.93-101
    • /
    • 2001
  • This paper presents modeling of an inductive micro position sensing system and its analysis. The parameters affected the system response are excitation frequency, turn ratio, input position, air-gap size, load resistance, and geometric dimensions. To analyze the system, we try to establish a modeling based on an equivalent magnetic circuit with permeances. The model is verified by the experimental results from 1 kHz to 20 kHz. The magnetic circuit model is well fitted to the experimental data except a little error due to LC resonance in the large turn-ratio system. Modeling enables us to theoretically approach the response characteristics. Based on the magnetic circuit model, system parameters can be selected in such a way to obtain the required characteristics such as high sensitivity, good linearity, or small size.

  • PDF

RC Tree Delay Estimation (RC tree의 지연시간 예측)

  • 유승주;최기영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.209-219
    • /
    • 1995
  • As a new algorithm for RC tree delay estimation, we propose a $\tau$-model of the driver and a moment propagation method. The $\tau$-model represents the driver as a Thevenin equivalent circuit which has a one-time-constant voltage source and a linear resistor. The new driver model estimates the input voltage waveform applied to the RC more accurately than the k-factor model or the 2-piece waveform model. Compared with Elmore method, which is a lst-order approximation, the moment propagation method, which uses $\pi$-model loads to calculate the moments of the voltage waveform on each node of RC trees, gives more accurate results by performing higher-order approximations with the same simple tree walking algorithm. In addition, for the instability problem which is common to all the approximation methods using the moment matching technique, we propose a heuristic method which guarantees a stable and accureate 2nd order approximation. The proposed driver model and the moment propagation method give an accureacy close to SPICE results and more than 1000 times speedup over circuit level simulations for RC trees and FPGA interconnects in which the interconnect delay is dominant.

  • PDF

Analysis on the Noise Factors of Static Induction Photo-Transistor (SIPT) (1) - The SIPT's Equivalent Circuits for the Analysis on the Noise Factors - (정전유도(靜電誘導) 포토 트랜지스터의 잡음(雜音) 원인(原因) 분석(分析) (1) - 잡음(雜音) 원인(原因) 분석(分析)을 위한 SIPT 등가회로(等價回路) -)

  • Kim, Jong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.29-40
    • /
    • 1995
  • In this paper, the noise equivalent cicuits that is necessary to the formulation of D.C. and noise characteristics, residual component and input capacitance so as to analyze on the noise factors of the SIT is proposed. The simplest noise equivalent circuit is the model representing the mechanism of the SIT and the measured values in this model were found as small as the values of the shot-noise. In the source resistance inserted equivalent circuit is conformed that the shot-noise will be reduced by the negative-feedback effect of the source resistance. In oder to analyze the correct noise reduction factor, I proposed the equivalent circuit which the formulas of the source and drain resistance was induced. In the experiment which affirm the equivalent circuits, the influence of the signal source resistance and output load resistance on the residual component is small and the residual component can be expressed by the equivalent input noise resistance. Moreover, the input capacitance is 13.6 pF when the load resistance is $0{\Omega}$ and the capacitance which does not concern with the SIT operation directly, that is, gate wire etc, is 10pF or so.

  • PDF

Analysis and Modeling of Magnetic Characteristics in Surface-Mounted Permanent-Magnet Machines with Rotor Overhang

  • Yeo, Han-Kyeol;Woo, Dong-Kyun;Lim, Dong-Kuk;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.399-404
    • /
    • 2013
  • The rotor overhang is used to enhance air-gap flux and improve power density. Due to asymmetry in the axial direction caused by the overhang, the time consuming 3D analysis is necessary to design the motor with overhang. To solve this problem, this paper proposes the equivalent magnetic circuit model (EMCM) that can consider overhang effects without the 3D analysis by using effective air-gap length. The analysis time can be reduced significantly via the proposed EMCM. The reduction of the analysis time is essential for the preliminary design of the motor. In order to verify the proposed model, the 3-D finite-element method (FEM) analysis is adopted. 3-D FEM results confirm the validity of the proposed EMCM.

Online Identification of Li-ion Battery's Internal Resistance based on a Recursive Least Squares Method to Prevent Overvoltage/Undervoltage (리튬이온 배터리의 과전압/저전압을 막기 위한 회기 최소 자승법 기반의 실시간 내부 저항 추정방법)

  • Kim, Woo-Yong;Lee, Pyeong-Yeon;Kim, Jonghoon;Kim, Kyung-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.237-239
    • /
    • 2018
  • This paper proposes an on-line estimation algorithm of internal resistance of Li-ion battery based on the recursive least squares method to prevent the overvoltage and undervoltage casing degradation of life cycle of battery. An equivalent circuit model with single time constant is adopted, and under assumptions that the terminal voltage, current and SOC are measured accurately, the discrete time based nonlinear equation of the model can be converted to the linear equation which can be applied to recursive least squares method. Since the coefficients of the discrete time linear equation can be expressed by the parameters of the equivalent circuit model, it is shown that an internal resistance (Ri) can be estimated in real time using the least square method.

  • PDF