• Title/Summary/Keyword: equipment loading

Search Result 321, Processing Time 0.032 seconds

Effect of water jetting parameters on the penetration behavior of jack-up spudcan in surficial sand condition

  • Han, Dong-Seop;Kim, Seung-Jun;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-19
    • /
    • 2015
  • The water jetting system for a jack-up spudcan requires the suitable design considering the platform/spudcan particulars, environments, and soil conditions, either the surficial clay or surficial sand. The usage of water jetting depends critically on soil conditions. The water jetting is usually used for the smooth and fast extraction of the spudcan in the surficial clay condition. It is also required for inserting spudcan up to the required depth in the surficial sand condition, which is investigated in this paper. Especially, it should be very careful to use the water jetting during an installation of spudcan in the surficial sand condition, because there is a risk of overturning accident related to the punch-through. Therefore, in this study, the effect of water jetting flow rate and time on the change of soil properties and penetration resistance is analyzed to better understand their interactions and correlations when inserting the spudcan with water jetting in surficial sand condition. For the investigation, a wind turbine installation jack-up rig (WTIJ) is selected as the target platform and the multi layered soil (surficial sand overlaying clays) is considered as the soil condition. The environmental loading and soil-structure interaction (SSI) analysis are performed by using CHARM3D and ANSYS. This kind of investigation and simulation is needed to decide the proper water jetting flow rate and time of spudcan for the given design condition.

A Study on the Anchoring Safety Assessment of E-Group Anchorage in Ulsan Port (울산항 E 집단정박지 묘박안전성 평가에 관한 연구)

  • Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.172-178
    • /
    • 2014
  • This study suggests the minimum critical external forces based on the assessment of anchoring safety to single anchor situation for representative 8 number of ships in E-group anchorage of Ulsan port. Assessment of anchoring safety is compared holding powers of anchor with external forces of wind, wave and current. Holding powers was reflected materials of seabed, equipment numbers regarding anchor and chain weight, also external forces acting on a hull was calculated considering projected wind area and wetted surface area to the full and ballast conditions respectively. The results of anchoring safety assessments to single anchor showed that the minimum criteria of dragging anchor is a little different from ship's type, size and loading conditions. Bulk carrier can be dragged over the 15m/s of winds and Tanker can be dragged over the 13m/s of winds in case of less than 2knots of currents speed.

Multi-hop RFID Reader and Tag Communication Architecture for Port Logistics (항만 물류용 RFID 리더-태그 간 다중 홉 통신 구조)

  • Yoo, Young-Hwan;Kim, Jin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.532-541
    • /
    • 2009
  • The RFID technology has attracted much attention these days due to the far better efficiency than the bar-code and magnetic card system. As an important usage, the 433 MHz active RFID tag was already adopted to the container ports in the United States and Europe for container loading/unloading automation and equipment location. However, there is one problem to be solved for the complete automation. RFID readers support only the direct communication with tags within their RF communication range. Then there are a lot of containers and equipments such as crane, yard tractor, and forklift in ports; and because they are made of metal, they interfere the RF communication, resulting in the occurrence of the dead-zone. In the dead-zone, RFID tags cannot receive any signal from readers. There may be several solutions to resolve the dead-zone problem. Among them, this paper suggests the most economical solution where RFID tags in the dead-zone can communicate with readers via neighbor tags in the multi-hop manner The new RFID communication architecture should be carefully designed in order to maintain the compatibility with the previous standard. Our experiment shows that the proposed architecture works well even in the case where some tags are out of the RF range of reader.

Homogeneous Shape Forming of Alumina by Pressure-Vacuum Hybrid Slip Casting (가압-진공 하이브리드 주입성형에 의한 알루미나의 균질 성형)

  • Cho, Kyeong-Sik;Song, In-Beom;Kim, Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.592-600
    • /
    • 2012
  • Conventional methods for preparing ceramic bodies, such as cold isostatic pressing, gypsum-mold slip casting, and filter pressing are not completely suitable for fabricating large and thick ceramic plates owing to disadvantages of these processes, such as the high cost of the equipment, the formation of density gradients, and differential shrinkage during drying. These problems can be avoided by employing a pressure-vacuum hybrid slip casting approach that considers not only by the compression of the aqueous slip in the casting room (pressure slip casting) but also the vacuum sucking of the dispersion medium (water) around the mold (vacuum slip casting). We prepared the alumina formed bodies by means of pressure-vacuum hybrid slip casting with stepwise pressure loading up to 0.5 MPa using a slip consisting of 40 vol% solid, 0.6 wt% APC, 1 wt% PEG, and 1 wt% PVA. After drying the green body at $30^{\circ}C$ and 80% RH, the green density of the alumina bodies was about 56% RD. The sintered density of an alumina plate created by means of sintering at $1650^{\circ}C$ for 4 h exceeded 99.8%.This method enabled us to fabricate a $110{\times}110{\times}20$ mm alumina plate without cracks and with a homogeneous density, thus demonstrating the possibility of extending the method to the fabrication of other ceramic products.

Development of a Vertebral Fusion Device and Its Mechanical Analysis using 3-D Finite Element Method (척추용 퓨전 디바이스의 개발 및 3차원 유한요소법을 이용한 역학적 해석)

  • 김현수;전병찬;손한철;최경호;박정호;최태원
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.385-390
    • /
    • 2002
  • Nowadays, there are many attempts to develop domestic medical-equipments. In this study, it is performed to developed a new vertebral fusion device. The basic models are a rectangular-frame type and a screw type which are generally used for the patients. The main purpose of the development of a new device is to reduce the amount of bone taken out for the insertion of a device to vertebral disc and this paper is focused on th concept of a new device shape. In the results, two types are devised. One is a folding type and the other is a separate-push-in type device both are in primitive stage. However, in a folding type there are mechanical pins and the analysis of pins and the lock system is still in study and needs some time. Therefore a separate-push-in type is introduced in this study mainly and a prototype and 3-D finite element model are made and experimented and stress analyzed. From the results it is considered that it is stable for the basic loading condition of vertebra, however, it is required to develop a supporting operational equipment for the convenience of the operation in practice.

A Study on Operational Efficiency Improvement of Perpendicular Layout Container Terminal via introducing Interchange Transport Model (수직형 자동화 컨테이너 터미널 운영 효율성 제고를 위한 인터체인지 이송 모델 도입 방안 연구)

  • Jang, Jae-Hwan;Lee, Jung-Yoon
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.181-186
    • /
    • 2020
  • Until now, the development of design and operation model for automated container terminals has been mainly performed based on the western ports model, specializing in basic loading, and discharging operations. In the case of the Busan port, terminal operators provide basic stevedoring, as well as an additional logistics service known as 'On Dock Service' not suitable for the currently commercialized automated container terminal model. This study diagnosed the current Busan port's throughput structure and terminal operational characteristic, and proposed a modified perpendicular layout container terminal transport model named 'Interchange Transport Model' for effective management of empty container and operation costs. Although the 'Interchange Transport Model' requires an additional number of transport equipment (AGV), concerning operational efficiency and cost saving, a simulation showed 22% reduction of TAT and 9.4% reduction of annual terminal operational costs in comparison to the basic perpendicular layout model.

FINITE ELEMENT STRESS ANALYSIS OF A TOOTH RESTORED WITH CAD/CAM CERAMIC INLAY (CAD/CAM 세라믹 인레이로 수복한 치아의 응력분포에 관한 유한요소법적 연구)

  • 송보경;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.6
    • /
    • pp.464-484
    • /
    • 2001
  • When restoring a tooth, the dentist tries to choose the ideal material for existing situation. One criterion that is considered is its suitability for restoring coronal strength. As more tooth structure is removed, the cusps are weakened and susceptible to fracture. Further, this increased deformation may cause the formation of intermittent gaps at the margin between the hard tissue and the restoration, facilitating marginal leakage. The improvements in ceramic materials now make it possible for alternatives to amalgams, composites, and cast metal to be of offered for posterior teeth. Of the materials used, ceramics most closely approximates the properties of enamel. The introduction of computer-aided design/computer-aided manufacture(CAD/CAM) systems to restorative dentistry represents a major technological breakthrough. It is possible to design and fabricate ceramic restorations at a single appointment. Additionally, CAD/CAM systems eliminate certain errors and inaccuracies that are inherent to the indirect method and provide an esthetic restoration. The aim of this investigation was to study the loading characteristics of CAD/CAM ceramic inlay and to compare the stress distribution and displacement associated with different designs of cavity(the isthmus width and cavity depth). A human maxillary left first premolar was prepared with standard mesio-occlusal cavity preparation, as recommended by the manufacturer Ceramic inlay was fabricated with CEREC 2 CAD/CIM equipment and cemented into the prepared cavity. Three dimensional model was made by the serial photographic method. The cavity width was varied $\frac{1}{3}$, $\frac{1}{2}$ and $\frac{2}{3}$ of intercuspal distance between buccal and lingual cusp tip. The cavity depth was varied 1.5mm and 2.3mm. So six models were constructed to simulate six conditions. A point load of 500N was applied vertically onto the first node of the lingual slope from the buccal cusp tip. The stress distribution and displacement were solved using ANSYS finite element program(Swanson Analysis System). (omitted)

  • PDF

Adhesive Behaviors of the Aluminum Alloy-Based CrN and TiN Coating Films for Ocean Plant

  • Murakami, Ri-Ichi;Yahya, Syed Qamma Bin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.106-115
    • /
    • 2012
  • In the present study, TiN and CrN films were coated by arc ion plating equipment onto aluminum alloy substrate, A2024. The film thickness was about 4.65 ${\mu}m$. TiN and CrN films were analyzed by X-ray diffraction and energy dispersive X-ray equipments. The Young's modulus and the micro-Vickers hardness of aluminum substrate were modified by the ceramic film coatings. The difference in Young's modulus between substrate and coating film would affect on the wear resistance. The critical load, Lc, was 75.8 N for TiN and 85.5 N for CrN. It indicated from the observation of optical micrographs for TiN and CrN films that lots of cracks widely propagated toward the both sides of scratch track in the early stage of MODE I. TiN film began to delaminate completely at MODE II stage. The substrate was finally glittered at MODE III stage. For CrN film, a few crack can be observed at MODE I stage. The delamination of film was not still occurred at MODE II and then was happened at MODE III. This agrees with critical load measurement which the adhesive strength was greater for CrN film than for TiN film. Consequently, it was difficult for CrN to delaminate because the adhesive strength was excellent against Al substrate. The wear process, which the film adheres and the ball transfers, could be enhanced because of the increase in loading. The wear weight of ball was less for CrN than for TiN. This means that the wear damage of ball was greater for TiN than for CrN film. It is also obvious that it was difficult to delaminate because the CrN coating film has high toughness. The coefficient of friction was less for CrN coating film than for TiN film.

An Experimental Study on the Application of Horizontal Barrier and In-Rack Sprinklers to Prevent Vertical Spread of Rack-type Warehouse Fires (랙크식 창고 화재의 수직 확산 방지를 위한 수평차단막과 In-Rack 스프링클러 적용에 관한 실험연구)

  • Park, Moon-Woo;Hong, Sung-Ho;Choi, Ki-Ok;Choi, Don-Mook;Kim, Soo-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.15-21
    • /
    • 2019
  • A rack-type warehouse has the advantage of storing a large amount in a small area by loading goods vertically. But in terms of fire risk, the fire load is very high, which can cause massive damage in the event of a fire. In the United States, research has been actively conducted to minimize the spread of vertical fires, and relevant standards have been established and operated. In Korea, research and related standards are insufficient to prevent the vertical spread of rack-type warehouse fires. In this study, an experimental study was conducted to prevent the vertical spread of a rack-type warehouse fire using a horizontal barrier and in-rack sprinklers. As a result of the test, the horizontal barrier considering the continuous flame prevented the vertical spread of the flame for a certain time. However, the horizontal barrier with continuous flame did not show the effect of preventing continuous flame. The combination of the horizontal barrier and the in-rack sprinkler prevented the vertical spread of fire effectively. In addition, the heat collecting effect through the horizontal barrier was shown and helped the early operation of the in-rack sprinklers.

Dynamic Responses of Base Isolation Devices for Telecommunication Equipment in Building Structures (건축물 내 방송통신설비를 위한 면진장치의 동적거동)

  • Jeong, Saebyeok;Choi, Hyoung-Suk;Seo, Young-Deuk;Jung, Donghyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • In earthquake situations, broadcasting and communication services are directly linked to rapid on-site rescue and effective restoration works. Recently, a variety of base isolation devices are widely introduced on building floors to avoid critical seismic damages of telecommunication facilities. However, in buildings with long fundamental periods, those devices may have undesirable amplification of seismic responses due to resonance effect between the building floors and base isolation devices. This study performs the seismic safety evaluation of two types of base isolation devices deployed for telecommunication facilities in mid- and high-rise buildings through numerical and experimental approaches. It is found that mid- and high-rise buildings can have low-frequency dynamic responses at the top floor when being subjected to design basis earthquake loading. Furthermore, bi-directional shake table testing demonstrated that the selected base isolation devices can exhibit unstable dynamic behaviors under such low-frequency excitations of the floor.