• Title/Summary/Keyword: equilibrium point

Search Result 561, Processing Time 0.022 seconds

The understanding of the Longitudinal Static Stability Flight Test (종축 정안정성 비행시험기법 이해)

  • Lee, Ju-Ha
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.142-147
    • /
    • 2007
  • When the aircraft is developed, several flight tests are performed including stability and controllability, performance and systems, above all the most important part of the flight test is stability test. Stability test is divided into two parts, static stability and dynamic stability. Static stability of the aircraft is typically defined in terms of its initial tendency to return to equilibrium after a disturbance and not included time concept. One of static stability, longitudinal static stability, was addressed here. The longitudinal static stability was studied from the basic theory to the flight test method and also explained data reduction method throughout the flight test. Finally showed how to meet the specifications such as ROC, FAR and MIL-specifications.

  • PDF

Load Balancing Algorithm of Ultra-Dense Networks: a Stochastic Differential Game based Scheme

  • Xu, Haitao;He, Zhen;Zhou, Xianwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2454-2467
    • /
    • 2015
  • Increasing traffic and bandwidth requirements bring challenges to the next generation wireless networks (5G). As one of the main technology in 5G networks, Ultra-Dense Network (UDN) can be used to improve network coverage. In this paper, a radio over fiber based model is proposed to solve the load balancing problem in ultra-dense network. Stochastic differential game is introduced for the load balancing algorithm, and optimal load allocated to each access point (RAP) are formulated as Nash Equilibrium. It is proved that the optimal load can be achieved and the stochastic differential game based scheme is applicable and acceptable. Numerical results are given to prove the effectiveness of the optimal algorithm.

Dynamical Behavior of a Third-Order Difference Equation with Arbitrary Powers

  • Gumus, Mehmet;Abo-Zeid, Raafat;Ocalan, Ozkan
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.2
    • /
    • pp.251-263
    • /
    • 2017
  • The aim of this paper is to investigate the dynamical behavior of the difference equation $$x_{n+1}={\frac{{\alpha}x_n}{{\beta}+{\gamma}x^p_{n-1}x^q_{n-2}}},\;n=0,1,{\ldots}$$, where the parameters ${\alpha}$, ${\beta}$, ${\gamma}$, p, q are non-negative numbers and the initial values $x_{-2}$, $x_{-1}$, $x_0$ are positive numbers. Also, some numerical examples are given to verify our theoretical results.

Visual tracking algorithm using the double active bar models (이중 능동보 모델을 이용한 영상 추적 알고리즘)

  • 고국원;김재선;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.89-92
    • /
    • 1996
  • In this paper, we developed visual tracking algorithm using double active bar. The active bar model to represent the object can reduce the search space of energy surface and better performance than those of snake model. However, the contour will not find global equilibrium when driving force caused by image may be weak. To overcome this problem. Double active bar is proposed for finding the global minimum point without any dependence on initialization. To achieve the goal, an deformable model with two initial contours in attempted to search for a global minimum within two specific initial contours. This approach improve the performance of finding the contour of target. To evaluate the performance, some experiments are executed. We can achieved the good result for tracking a object on noisy image.

  • PDF

Adaptive control to compensate the modeling error of STT missile (STT 미사일의 모델링 오차 보상을 위한 적응 제어)

  • 최진영;좌동경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1292-1295
    • /
    • 1996
  • This paper proposes an adaptive control technique for the autopilot design of STT missile. Dynamics of the missile is highly nonlinear and the equilibrium point is vulnerable to change due to fast maneuvering. Therefore nonlinear control techniques are desirable for the autopilot design of the missile. The nonlinear controller requires the exact model to obtain satisfactory performance. Generally a look-up table is used for the dynamic coefficients of a missile, so there must be coefficients error during actual flight, and the performance of the nonlinear controller using these data can be degraded. The proposed adaptive control technique compensates the nonlinear controller with modeling error resulting from the error of aerodynamic data and disturbance. To investigate the usefulness, the proposed method is applied to autopilot design of STT missile through simulations.

  • PDF

Global Finite-Time Convergence of TCP Vegas without Feedback Information Delay

  • Choi, Joon-Young;Koo Kyung-Mo;Lee, Jin S.;Low Steven H.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.70-78
    • /
    • 2007
  • We prove that TCP Vegas globally converges to its equilibrium point in finite time assuming no feedback information delay. We analyze a continuous-time TCP Vegas model with discontinuity and high nonlinearity. Using the upper right-hand derivative and applying the comparison lemma, we cope with the discontinuous signum function in the TCP Vegas model; using a change of state variables, we deal with the high nonlinearity. Although we ignore feedback information delay in analyzing the model of TCP Vegas, the simulation results illustrate that TCP Vegas in the presence of feedback information delay shows very similar dynamic trends to TCP Vegas without feedback information delay. Consequently, dynamic properties of TCP Vegas without feedback information delay can be used to estimate those of TCP Vegas in the presence of feedback information delay.

A Study on the Transient Flow Process in a Vacuum Ejector-Diffuser System (진공 이젝터-디퓨져 시스템내의 비정상 유동 과정에 관한 연구)

  • Vincent, Lijo;Kim, Heuy-Dong;Setoguchi, T.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.299-302
    • /
    • 2009
  • The objective of the present study is to analyze the transient flow through theejector system with the help of a computational fluid dynamics (CFD) method. An attempt is made to investigate the interesting and conflicting phenomenon of the infinite entrainment into the primary stream without an infinite mass supply from the secondary chamber. The results obtained show that the one and only condition in which an infinite mass entrainment can be possible in such types of ejectors is the generation of a re-circulation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium of pressures at the onset of the recirculation zone. A steady flow in the ejector system is valid only after this point.

  • PDF

Buckling Analysis of the Large Span Spatial Structures by Modal Analysis (Modal Analysis법에 의한 무주대공간 구조물의 좌굴해석)

  • 한상을;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.195-201
    • /
    • 1996
  • This paper is mainly forcused on the application of modal analysis In analyze the geometrically non-linear buckling behaviors of large span spatial structures, and the evaluation of each eigen mode affected post-buckling behaviors and buckling loads. Modal analysis is applied . to derivation of the system matrices transforming actual displacement space into generalized coordinates space represented by coefficients multiplied in the linear combination of eigen modes which are independent and orthogonal each other. By using modal analysis method, it will be expected to save the calculating time by computer extremely. For example, we can obtain the satisfactorily good results by using about 7% of total eigen modes only in case of single layer latticed dome. And we can decrease the possibility of divergence on the bifurcation point in the calculation of post-buckling path. Arc-length method and Newton-Raphson iteration method are used to calculate the nonlinear equilibrium path.

  • PDF

Robustness Analysis of MRAC System in the Presence of Unmodelled Dynamics (비모형화 특성을 갖는 기준모델 적응제어 시스템의 견고성 해석)

  • 김성덕;양해원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.10
    • /
    • pp.748-754
    • /
    • 1987
  • A robustness analysis for model reference adaptive control(MRAC) system with plant uncertainty is discussed in this paper. The adaptive control system is designed under assumptions that the controlled plant is represented by a lst order nominal model and that the system is drived by a constant reference signal. When using general gradient method(GGM), it is shown that unmodelled dynamics in plant model can cause the instability of the overall control loop during the adaptation process. However, as the algorithm of least square method(LSM) is introduced, the global stability of the system can be hold. And it is also given that the boundedness of adjustable parameters may be verified using the concept of an equilibrium point analysis.

  • PDF

Theoretical and Experimental Studies on the Kinetics of Cation Redistribution Processes in Complex Oxides

  • Shi, Jianmin;Becker, Klaus-Dieter
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • The kinetics of cation reequilibration have been studied theoretically and experimentally in complex oxides after an external perturbation of equilibrium by temperature jumps. A general kinetic model for cation redistribution amongst non-equivalent sites in complex oxides is derived based on a local homogeneous point defect mechanism involving cation vacancies. Temperature-jump optical relaxation spectroscopy has been established to investigate cation kinetic processes in spinels and olivines. The kinetic model satisfactorily describes the experimental absorbance relaxation kinetics in cobalt containing olivines and in nickel containing spinels. It is found that the kinetics of cation redistribution in complex oxides shows a strong temperature- and composition-dependence. Activation energies for cation redistribution in Co-Mg olivines are found to range between 200 and 220 kJ/mol whereas an energy barrier of about 230 kJ/mol is observed in the case of nickel gallate spinel.