
KYUNGPOOK Math. J. 57(2017), 251-263

https://doi.org/10.5666/KMJ.2017.57.2.251

pISSN 1225-6951 eISSN 0454-8124

c© Kyungpook Mathematical Journal

Dynamical Behavior of a Third-Order Difference Equation
with Arbitrary Powers

Mehmet Gümüş∗
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Abstract. The aim of this paper is to investigate the dynamical behavior of the difference
equation

xn+1 =
αxn

β + γxpn−1x
q
n−2

, n = 0, 1, . . . ,

where the parameters α, β, γ, p, q are non-negative numbers and the initial values

x−2,x−1, x0 are positive numbers. Also, some numerical examples are given to verify

our theoretical results.

1. Introduction

In the last twenty years, many papers appeared focusing on the investigation of
the qualitative analysis of solutions of difference equations (see [2, 3, 4, 7, 8, 9, 14,
15, 17, 22] and the references cited therein). Applications of difference equations
have appeared in many areas such as population dynamics, ecology, economics,
probability theory, genetics, psychology, physics, engineering, sociology, statistical
problems, stochastic time series, number theory, electrical networks, neural net-
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works, queuing problems and so on. Namely, the theory of difference equations gets
a central position in applicable analysis. Hence, it is very valuable to study the
dynamical behavior of solutions of non-linear rational difference equations.

In our opinion, it is of a great importance to investigate not only non-linear
difference equations, but also those equations which contain powers of arbitrary
positive numbers (see [3, 4, 6, 7, 11, 13, 21, 23]).

The purpose of this paper is to study the local asymptotic stability of equilibria,
the periodic nature and the global behavior of solutions of the following fractional
difference equation

(1.1) xn+1 =
αxn

β + γxpn−1x
q
n−2

, n ∈ N

where the parameters α, β, γ, p, q are non-negative numbers and the initial values
x−2, x−1, x0 are positive numbers such that the denominator is always positive.

In [7], El-Owaidy et al. investigated the global behavior of the following rational
recursive sequence

xn+1 =
αxn−1

β + γxpn−2
, n ∈ N

with non-negative parameters and non-negative initial values.
By generalizing the results of El-Owaidy et al. [7], Chen et al. [6] studied the

dynamical behavior of the following rational difference equation

xn+1 =
αxn−k

β + γxpn−l
, n ∈ N

where k, l ∈ N, the parameters are positive real numbers and the initial values
x−max{k,l},. . . ,x−1, x0 ∈ (0,∞).

Ahmed in [3, 4] investigated the global asymptotic behavior and the periodic
character of the difference equations

xn+1 =
αxn−1

β + γxpnx
q
n−2

, n ∈ N

and
xn+1 =

αxn−1

β + γ
k∏
i=l

xpin−2i

, n ∈ N

where the parameters are non-negative real numbers and the initial values are non-
negative real numbers.

In [10], Erdogan et al. investigated the dynamical behavior of positive solutions
of the following higher order difference equation

xn+1 =
αxn−1

β + γ
t∑

k=1

xn−2k
t∏

k=1

xn−2k

, n ∈ N
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where the parameters are non-negative real numbers and the initial values are non-
negative real numbers.

In [16], Karatas investigated the global behavior of the equilibria of the following
difference equation

xn+1 =
Axn−m

B + C
2k+1∏
i=0

xn−i

, n ∈ N

where the parameters are non-negative real numbers and the initial values are non-
negative real numbers.

If some parameters of Eq.(1.1) are zero, then special cases emerge. If α = 0, we
have the trivial case. If β = 0, Eq.(1.1) is reduced to a linear difference equation
by the change of variables xn = eyn . If γ = 0, Eq.(1.1) is reduced to a linear first
order difference equation.

Note that Eq.(1.1) can be reduced to the following fractional difference equation

(1.2) yn+1 =
ryn

1 + ypn−1y
q
n−2

, n ∈ N

by the change of variables xn = (βγ )
1

p+q yn with r = α
β . So, we shall study Eq.(1.2).

2. Preliminaries

For the sake of completeness and the readers convenience, we are including some
basic results (one can see [1, 5, 12, 18, 19, 20] and the references cited therein).

Let I be an interval of real numbers and let f : I × I × I → I be a continuously
differentiable function. Then for any condition x−2, x−1, x0 ∈ I, the difference
equation

(2.1) xn+1 = f(xn, xn−1, xn−2), n ∈ N

has a unique positive solution {xn}∞n=−2.

Definition 2.1. An equilibrium point of Eq.(2.1) is a point x that satisfies

x = f(x, x, x).

The point x is also said to a fixed point of the function f.

Definition 2.2. Let x be a positive equilibrium of (2.1).

(a) x is stable if for every ε > 0, there is δ > 0 such that for every positive solution

{xn}∞n=−2 of (2.1) with
0∑

i=−2
|xi − x| < δ, |xn − x| < ε, holds for n ∈ N.

(b) x is locally asymptotically stable if x is stable and there is γ > 0 such
that limxn = x holds for every positive solution {xn}∞n=−2 of (2.1) with

0∑
i=−2

|xi − x| < γ.
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(c) x is a global attractor if limxn = x holds for every positive solution {xn}∞n=−2
of (2.1).

(d) x is globally asymptotically stable if x is both stable and global attractor.

Definition 2.3. The linearized equation of (2.1) about the equilibrium point x is

(2.2) yn+1 = ζ0yn + ζ1yn−1 + ζ2yn−2, n ∈ N

where

ζ0 =
∂f

∂xn
(x, x, x), ζ1 =

∂f

∂xn−1
(x, x, x), ζ2 =

∂f

∂xn−2
(x, x, x).

The characteristic equation of (2.2) is

(2.3) F (λ) = λ3 − ζ0λ2 − ζ1λ− ζ2 = 0.

The following result, known as the Linearized Stability Theorem, is very useful
in determining the local stability character of the equilibrium point x of equation
(2.1).

Theorem 2.4. (The Linearized Stability Theorem)
Assume that the function F is a continuously differentiable function defined on
some open neighborhood of an equilibrium point x. Then, the following statements
are true:

(i) If all roots of (2.3) have absolute value less than one, then the equilibrium
point x of (2.1) is locally asymptotically stable.

(ii) If at least one of the roots of (2.3) has absolute value greater than one, then
the equilibrium point x of (2.1) is unstable. Also, the equilibrium point x of
(2.1) is called a saddle point if (2.3) has roots both inside and outside the unit
disk.

Theorem 2.5. Assume that α2, α1, and α0 are real numbers. Then, a necessary
and sufficient condition for all roots of the equation

λ3 + α2λ
2 + α1λ+ α0 = 0

to lie inside the unit disk is

(2.4) |α2 + α0| < 1 + α1, |α2 − 3α0| < 3− α1 and α2
0 + α1 − α0α2 < 1.

3. Main Results

In this section we prove our main results.

Theorem 3.1. We have the following cases for the equilibrium points of Eq.(1.2).
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(i) y0 = 0 is always the equilibrium point of Eq.(1.2).

(ii) If r > 1, then Eq.(1.2) has the positive equilibrium y1 = (r − 1)
1

p+q .

(iii) If r < 1 and 1
p+q is an even positive integer, then Eq.(1.2) has the positive

equilibrium y2 = (r − 1)
1

p+q which is always in the interval (0, 1).

Proof. The proof is easily obtained from the definition of equilibrium point. 2

In the following theorems, we investigate the local asymptotic behavior of the
equilibria and the global behavior of solutions of Eq.(1.2) with r, p, q > 0 and
positive initial conditions.

Theorem 3.2. For Eq.(1.2), we have the following results.

(i) If r < 1, then the zero equilibrium point is locally asymptotically stable.

(ii) If r > 1, then the zero equilibrium point is locally unstable.

(iii) If r = 1, then the zero equilibrium point is non-hyperbolic point.

(iv) Assume that r > 1 and let q < r
r−1 (− 1

2 + 1
2

√
5− 4p( r−1r )). Then the positive

equilibrium point y1 = (r − 1)
1

p+q is locally asymptotically stable if either

(3.1) q ≤ p

or

(3.2) p < q < p+ 2
r

r − 1
.

(v) Assume that r ∈ (0, 1) such that 1
p+q is an even positive integer. Then the

positive equilibrium point y2 = (r − 1)
1

p+q is unstable.

Proof. The linearized equation associated with Eq.(1.2) about zero equilibrium has
the form

(3.3) zn+1 − rzn = 0, n = 0, 1, ....

The characteristic equation of (3.3) about the zero equilibrium is

(3.4) λ3 − rλ2 = 0.

So, the proof of (i), (ii) and (iii) follows immediately from Linearized Stability
Theorem.

For the proof (iv) suppose that r > 1, then the linearized equation associated

with Eq.(1.2) about y1 = (r − 1)
1

p+q is

(3.5) zn+1 − zn +
p(r − 1)

r
zn−1 +

q(r − 1)

r
zn−2 = 0, n = 0, 1, ....
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The associated characteristic equation about the equilibrium y1 = (r − 1)
1

p+q is

(3.6) λ3 − λ2 +
p(r − 1)

r
λ+

q(r − 1)

r
= 0.

According to Theorem (2.2) and (3.6), we have α2 = −1, α1 = p(r−1)
r and α0 =

q(r−1)
r .

If q ≤ p, then we have

−1 + q(
r − 1

r
) < 1 + p(

r − 1

r
).

Otherwise, if

q < p+ 2
r

r − 1
,

then

q(
r − 1

r
) < p(

r − 1

r
) + 2.

This implies that

−1 + q(
r − 1

r
) < 1 + p(

r − 1

r
).

Therefore, in all cases

|α2 + α0| < 1 + α1.

As q < r
r−1 (− 1

2 + 1
2

√
5− 4p( r−1r )), we get the following two results:

Firstly: Multiplying both sides by r−1
r , we get

q(
r − 1

r
) +

1

2
<

1

2

√
5− 4p(

r − 1

r
).

That is,

q2(
r − 1

r
)2 + q(

r − 1

r
) +

1

4
<

1

4
(5− 4p(

r − 1

r
).

Then,

q2(
r − 1

r
)2 + p(

r − 1

r
) + q(

r − 1

r
) < 1.

Therefore,

α2
0 + α1 − α0α2 < 1.

Secondly: As α1 < 1− α2
0 − α0, we get

1 + 3q(
r − 1

r
) + p(

r − 1

r
) < 1 + 3q(

r − 1

r
) + 1− q(r − 1

r
)− q2(

r − 1

r
)2

= 2 + 2q(
r − 1

r
)− q2(

r − 1

r
)2.



Dynamical Behavior of a Third-Order 257

Note that

2q(
r − 1

r
)− q2(

r − 1

r
)2 < 1.

Otherwise,
(
q( r−1r )− 1

)
≤ 0, which is either a contradiction or contradicts the given

assumption. Then, we have that

1 + 3q(
r − 1

r
) + p(

r − 1

r
) < 3.

This implies that

1 + 3q(
r − 1

r
) < 3− p(r − 1

r
).

Therefore,

|α2 + α0| < 3− α1.

Applying Theorem (2.2), we get the result. This completes the proof (iv).
For the proof (v) we assume that r < 1, then the linearized equation associated

with Eq.(1.2) about y2 = (r − 1)
1

p+q is

tn+1 − tn +
p(r − 1)

r
tn−1 +

q(r − 1)

r
tn−2 = 0, n = 0, 1, . . . .

Therefore, the characteristic equation about the equilibrium y2 is

λ3 − λ2 +
p(r − 1)

r
λ+

q(r − 1)

r
= 0.

If we set the function as follows;

g(λ) = λ3 − λ2 +
p(r − 1)

r
λ+

q(r − 1)

r
,

then, it is clear that

g(1) =
(p+ q)(r − 1)

r
< 0

and

lim
λ→∞

g(λ) =∞.

So, g(λ) has a root in the interval (1,∞). This completes the proof. 2

Theorem 3.3. Every solution of Eq.(1.2) is bounded.

Proof. Let {yn}∞n=−2 be a solution of Eq.(1.2). For the sake of contradiction, assume
that the solution is not bounded from above. Then, there exists a subsequence
{ynm+1}∞m=0 such that

lim
n→∞

nm =∞, lim
n→∞

ynm+1 =∞
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and
ynm+1 = max{yn : n ≤ nm}, for all m ≥ 0.

From Eq.(1.2) we have

ynm+1 =
rynm

1 + ypnm−1y
q
nm−2

→∞ as m→∞.

So, we obtain ynm →∞. Similarly, we can obtain ynm−1 →∞ and ynm−2 →∞ as
m→∞. Hence, for sufficiently large m

0 ≤ ynm+1 − ynm
=
ynm

(r − 1− ypnm−1y
q
nm−2)

1 + ypnm−1y
q
nm−2

< 0,

which is a contradiction. This completes the proof. 2

Theorem 3.4. Assume that r > 1. Then the following statements are true:

(i) Let {yn}∞n=−2 be a solution of Eq.(1.2) such that for some n0 ∈ N, either

yn > y1 = p+q
√
r − 1 for n > n0

or
yn < y1 = p+q

√
r − 1 for n > n0.

Then, for n ≥ n0 + 2, the sequence {yn} is monotonic and

lim
n→∞

yn = y1.

(ii) Let {yn}∞n=−2 be a non-oscillatory solution of Eq.(1.2) and consider the pos-
itive equilibrium y1. Then, the extreme in each semicycle about y1 occurs at
either the second term or the third.

Proof. Assume that for some n > n0

yn > y1 = p+q
√
r − 1

holds. That is, for n ≥ n0 + 2 we have

yn+1 =
ryn

1 + ypn−1y
q
n−2

<
ryn

1 + yp+q1

= yn.

Hence, we obtain that {yn} is monotonic for n ≥ n0 + 2. Let limn→∞ yn = l.
For the sake of contradiction, assume that l > y1. Then, we obtain

l(1 + lp+q) = rl,

from which we see that l = p+q
√
r − 1 which contradicts the fact that y1 is the only

positive equilibrium point.
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The other case is similar and will be omitted. (ii) We prove only in case of pos-
itive semicycles. The proof for negative semicycles are similar and will be omitted.
Assume that for some N ≥ 0, the first three terms in a positive smicycle are yN ,
yN+1 and yN+2. Then

yN ≥ y1, yN+1 > y1 yN+2 > y1

and

yN+3 =
ryN+2

1 + ypN+1y
q
N

<
ryN+2

1 + yp+q1

= yN+2,

yN+4 =
ryN+3

1 + ypN+2y
q
N+1

<
ryN+3

1 + yp+q1

= yN+3,

as desired. 2

Theorem 3.5. Assume that r < 1, then the zero equilibrium point of Eq.(1.2) is
globally asymptotically stable.

Proof. We know by Theorem 3.2 that, the zero equilibrium point of Eq.(1.2) is
locally asymptotically stable. Hence, it suffices to show that

lim
n→∞

yn = 0

for any positive solution {yn}∞n=−2 of Eq.(1.2). Let {yn}∞n=−2 be a positive solution
of Eq.(1.2). Then we have for all n ≥ 0.

0 < yn+1 =
ryn

1 + ypn−1y
q
n−2

< ryn.

By induction we obtain
yn < rny0.

For r < 1, we get
lim yn = 0.

This completes the proof. 2

Theorem 3.6. If p + 2 ≥ q, then Eq.(1.2) has no prime period-2 solutions. If
q > p+ 2 and r > q−p

q−p−2 , then Eq.(1.2) has prime period-2 solutions.

Proof. Assume that a prime two periodic solution exists in the following form

. . . , x, y, x, y, . . .

of Eq.(1.2). From Eq.(1.2) , we get the following equalities:

x =
ry

1 + xpyq
and y =

rx

1 + ypxq
.

That is,
ry − x = xp+1yq and rx− y = xqyp+1.
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This implies that

(
x

y
)p+1−q =

ry − x
rx− y

.

Now if we set λ = x
y , then we get

(3.7) r − λ = λp+1−q(rλ− 1).

As λp+1−q > 0 always, we obtain the relation 1
r < λ < r. We consider the following

cases:
Case 1. p + 2 ≥ q. We shall show that Eq.(3.7) has no positive real roots except
for λ = 1. If p + 2 − q = 0, then from Eq.(3.7) we get λ = 1. Now suppose that
p+ 2− q > 0. It is clear that λ = 1 is a root of Eq.(3.1). Consider the function

h(λ) = rλp+2−q − λp+1−q + λ− r.

The derivative of the function h is

(p+ 2− q)rλp+1−q − (p+ 1− q)λp−q + 1.

For all values of λ ≥ 0, we have

(p+ 1− q)λp−q(rλ− 1) + rλp+1−q + 1 > 0.

That is, h is an increasing function. Therefore, λ = 1 is the unique zero of the
function h.
Case 2 p+ 2− q < 0. From Eq.(3.7) we get

λq−p − rλq−p−1 + rλ− 1 = 0.

Let
g(λ) = λq−p − rλq−p−1 + rλ− 1 = 0.

Using simple analysis, if r > q−p
q−p−2 , then the function g has a zero λ0 other than

λ = 1.
Now, by a simple calculation, x and y satisfy the relation

x2 − y2 = xqyp+2 − xp+2yq.

If we set x−2 = x0 = x and x−1 = y. Then

x1 =
rx

1 + ypxq
=

rx

1 + (x
2

y2 − 1 + xp+2yq−2)
=

ry2

x(1 + xpyq)
= y

and

x2 =
ry

1 + xpyq
=

rx

1 + ( y
2

x2 − 1 + xq−2yp+2)
=

rx2

y(1 + xqyp)
= x.
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This completes the proof. 2

4. Numerical Examples

In this section, we will give some interesting numerical examples in order to
verify the theoretical results of this paper.

Example 4.1. Figure 1 shows that if r = 1.09 and p = q = 1, then the solution
{yn}∞n=−2 of Eq.(1.2) with initial conditions y−2 = 2, y−1 = 1.8, y0 = 1 converges
(increasingly) to y1 =

√
1.09− 1 = 0.3.

Example 4.2. Figure 2 shows that if r = 1.1, p = 0.25 and q = 0.25, then the
solution {yn}∞n=−2 of Eq.(1.2) with initial conditions y−2 = 2, y−1 = 0.8 and y0 = 1
converges (decreasingly) to y1 = (0.1)2 = 0.01.

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

Figure 1: yn+1 = 1.09yn
1+yn−1yn−2

0 20 40 60 80 100

0.01

0.02

0.03

0.04

0.05

0.06

Figure 2: yn+1 = 1.1yn
1+y0.25n−1y

0.25
n−2

Example 4.3. Figure 3 shows that if r = 1.8, p = 2 and q = 0.25, then the
solution {yn}∞n=−2 of Eq.(1.2) with initial conditions y−2 = 2, y−1 = 0.8 and y0 = 1

oscillates about the equilibrium point y1 = (0.8)
1

2.25 = 0.905.

Example 4.4. Figure 4 shows that if r = 0.32, p = 0.01 and q = 0.49 ( 1
p+q = 2),

then the equilibrium point y2 = (0.32− 1)
1

0.5 ' 0.46 of Eq.(1.2) is unstable.

Example 4.5. Figure 5 shows that if r = 3.5 and p = 1 and q = 4 (r = 3.5 >
q−p
q−p−2 = 3), then the solution {yn}∞n=−2 of Eq.(1.2) with initial conditions y−2 =

(12)1/5, y−1 = 0.5(12)1/5, y0 = (12)1/5 is a period-2 solution.

Example 4.6. Figure 6 shows that if r = 2.5 and p = 1 and q = 4 (r = 2.5 <
q−p
q−p−2 = 3), then the solution {yn}∞n=−2 of Eq.(1.2) with initial conditions y−2 =

(12)1/5, y−1 = 0.5(12)1/5, y0 = (12)1/5 is not a periodic solution.
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Figure 3: yn+1 = 1.8yn
1+y2n−1y

0.25
n−2
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Figure 4: yn+1 = 0.32yn
1+y0.01n−1y

0.49
n−2
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0.8
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Figure 5: yn+1 = 3.5yn
1+yn−1y4n−2
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0

2

4

6

8

Figure 6: yn+1 = 2.5yn
1+yn−1y4n−2
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