• Title/Summary/Keyword: eps beads

Search Result 18, Processing Time 0.028 seconds

Mechanical properties of expanded polystyrene beads stabilized lightweight soil

  • Li, Mingdong;Wen, Kejun;Li, Lin;Tian, Anguo
    • Geomechanics and Engineering
    • /
    • 제13권3호
    • /
    • pp.459-474
    • /
    • 2017
  • To investigate the mechanical properties of Expanded Polystyrene (EPS) Beads Stabilized Lightweight Soil (EBSLS), Laboratory studies were conducted. Totally 20 sets of specimens according to the complete test design were prepared and tested with unconfined compressive test and consolidated drained triaxial test. Results showed that dry density of EBSLS ($0.67-1.62g/cm^3$) decreases dramatically with the increase of EPS beads volumetric content, while increase slightly with the increase of cement content. Unconfined compressive strength (10-2580 kPa) increases dramatically in parabolic relationship with the increase of cement content, while decreases with the increase of EPS beads volumetric content in hyperbolic relationship. Cohesion (31.1-257.5 kPa) increases with the increase of cement content because it is mainly caused by the bonding function of hydration products of cement. The more EPS beads volumetric content is, the less dramatically the increase is, which is a result of the cohesion between hydration products of cement and EPS beads is less than that between hydration products of cement and sand particles. Friction angle ($14.92-47.42^{\circ}$) decreases with the increase of EPS beads volumetric content, which is caused by the smoother surfaces of EPS beads than sand grains. The stress strain curves of EBSLS tend to be more softening with the increase of EPS beads content or the decrease of cement content. The shear contraction of EBSLS increases with the increase of $c_e$ or the decrease of $c_c$. The results provided quantitative relationships between physico-mechanical properties of EBSLS and material proportion, and design process for engineering application of EBSLS.

인산석고와 폐 EPS Beads를 혼합한 경량토의 공학적 특성 (Engineering Properties of the Light Weight Soil Mixed with Phosphogypsum and Recycled EPS Beads)

  • 서동은;김영상;이우범;김원봉;유봉선
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.492-497
    • /
    • 2008
  • The objective of this research is an investigation of engineering properties of weathered granite soil mixed with Phosphogypsum and recycled EPS beads as an light-weighted soil. A series of geotechnical laboratory tests including physical index test, compaction test, CBR test and direct shear test were performed for various mixing ratios. Based on the laboratory test results, it was found that the maximum dry unit weight of the light weight soil ranges $1.46{\sim}1.61g/cm^3$ and the maximum dry unit weight decreases about 11~19.3% with the increase of amount of the recycled EPS beads and the optimum moisture content increase. Since the CBR values of the light weight soil ranges 10.4~18.4%, the light weight soil mixed with Phosphogypsum and recycled EPS beads can be used as a light weight backfill material on the soft soil.

  • PDF

EPS Bead 혼입비율에 따른 CLC의 단열특성 (Insulation Properties of CLC according to Mixing Ratio of EPS Bead)

  • 이정택;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.45-46
    • /
    • 2023
  • CLC is used as a filling material for many buildings, and according to energy saving design standards, CLC also requires insulation performance. However, it shows lower insulation performance compared to organic insulation, so additional research is needed. Therefore, in this study, the insulation properties of CLC were analyzed by incorporating EPS beads with high insulation performance into CLC. In this experiment, EPS beads and blast furnace slag were replaced, and W/B was fixed at 33%. The EPS Bead mixing ratio was divided into 5 levels: 0, 0.5, 1.0, 1.5, 2.0 (%), and the experimental items were measured for apparent density and thermal conductivity. As a result of the experiment, the apparent density and thermal conductivity tended to decrease as the mixing ratio of EPS beads increased. It is judged that the density decreased due to the low density and the micropores inside, and the thermal conductivity also decreased.

  • PDF

Applications of Extracellular Polysaccharide p-m10356

  • Park, Hee-Jung;Kim, Hyong-Ju;Lee, Chang-Moon;Kim, Jin;Lee, Hong-Kum;Yim, Joung-Han;Lee, Ki-Young
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.566-569
    • /
    • 2005
  • tyrosinase 저해 활성 실험 결과 1.2%(w/v) 이상의 농도에서 70% 이상의 저해를 나타내 색소침착에 대한 기능성 화장품 원료로 사용이 가능할 것으로 보이며, ACE 저해 활성 실험에서 1.5% 농도에서 60% 가량의 저해활성을 보여 혈관 변형 치료 및 예방에 효과가 있을 것으로 기대된다. UV 흡수능에서는 UV-B, UV-C의 영역에서 흡수 경향을 나타내며 자외선 차단제의 원료로 사용이 가능할 것으로 기대되며, 또한 bead 형성능을 가지고 있어 약물전달체로서 이용 가능성이 기대된다.

  • PDF

Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghorbani, Ali;Alamoti, Mohsen Nasiri
    • Geomechanics and Engineering
    • /
    • 제14권6호
    • /
    • pp.533-544
    • /
    • 2018
  • The importance of using materials cost effectively to enhance the strength and reduce the cost, and weight of earth fill materials in geotechnical engineering led researchers to seek for modifying the soil properties by adding proper additives. Lightweight fill materials made of soil, binder, water, and Expanded polystyrene (EPS) beads are increasingly being used in geotechnical practices. This paper primarily investigates the behavior of sandy soil, modified by EPS particles. Besides, the mechanical properties of blending sand, EPS and the binder material such as fly ash and cement were examined in different mixing ratios using a number of various laboratory studies including the Modified Standard Proctor (MSP) test, the Unconfined Compressive Strength (UCS) test, the California Bearing Ratio (CBR) test and the Direct Shear test (DST). According to the results, an increase of 0.1% of EPS results in a reduction of the density of the mixture for 10%, as well as making the mixture more ductile rather than brittle. Moreover, the compressive strength, CBR value and shear strength parameters of the mixture decreases by an increase of the EPS beads, a trend on the contrary to the increase of cement and fly ash content.

Determination of homogeneity index of cementitious composites produced with eps beads by image processing techniques

  • Comak, Bekir;Aykanat, Batuhan;Bideci, Ozlem Salli;Bideci, Alper
    • Computers and Concrete
    • /
    • 제29권2호
    • /
    • pp.107-115
    • /
    • 2022
  • With the improvements in computer technologies, utilization of image processing techniques has increased in many areas (such as medicine, defence industry, other industries etc.) Many different image processing techniques are used for surface analysis, detection of manufacturing defects, and determination of physical and mechanical characteristics of composite materials. In this study, cementitious composites were obtained by addition of Grounded Granulated Blast-Furnace Slag (GGBFS), Styrene Butadiene polymer (SBR), and Grounded Granulated Blast-Furnace Slag and Styrene Butadiene polymer together (GGBFS+SBR). Expanded Polystyrene (EPS) beads were added to these cementitious composites in different ratios (20%, 40% and 60%). The mechanical and physical characteristics of the composites were determined, and homogeneity indexes of the composites were determined by image processing techniques to determine EPS distribution forms in them. Physical and mechanical characteristics of the produced samples were obtained by applying consistency, density, water absorption, compressive strength (7 and 28 days), flexural strength (7 and 28 days) and tensile splitting strength (7 and 28 days) tests on them. Also, visual examination by using digital microscope, and image analysis by using image processing techniques with open source coded ImageJ program were performed. As a result of the study, it is determined that GGBFS and SBR addition strengthens the adhesion sites formed as it increases the adhesion power of the mixture and helps to get rid of the segregation problem caused by EPS. As a result of the image processing analysis it is demonstrated that GGBFS and SBR addition has positive contribution on homogeneity index.

Structural lightweight concrete containing expanded poly-styrene beads; Engineering properties

  • Vakhshouri, Behnam
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.581-597
    • /
    • 2020
  • Light-Weight Concrete containing Expanded Poly-Styrene Beads (EPS-LWC) is an approved structural and non-structural material characterized by a considerably lower density and higher structural efficiency, compared to concrete containing ordinary aggregates. The experimental campaign carried out in this project provides new information on the mechanical properties of structural EPS-LWC, with reference to the strength and tension (by splitting and in bending), the modulus of elasticity, the stress-strain curve in unconfined compression, the absorbed energy under compression and reinforcement-concrete bond. The properties measured at seven ages since casting, from 3 days to 91 days, in order to investigate their in-time evolution. Mathematical relationships are formulated as well, between the previous properties and time, since casting. The dependence of the compressive strength on the other mechanical properties of EPS-LWC is also described through an empirical relationship, which is shown to fit satisfactorily the experimental results.

폐 EPS 입자를 활용한 경량성토공법의 지지력 평가 (Bearing Capacity Characteristics of the Light Weight Method Used Recycled EPS Beads)

  • 이종규;이봉직;오세욱
    • 한국지반환경공학회 논문집
    • /
    • 제7권5호
    • /
    • pp.21-29
    • /
    • 2006
  • 경량성토공법은 성토체 자중을 감소시켜 지반의 침하를 감소시키는 공법으로 작업의 편리성 등의 이유로 적용사례가 증가하고 있다. 이와 관련하여 스티로폼은 연약지반상에 경량성토재로서 활용할 수 있는 것으로 알려져 있다. 경량성토재로서 스티로폼의 사용은 응력증가를 최소화 할 수 있으며, 안정재 사용을 통하여 지지력 증대와 침하감소효과를 얻을 수 있다. 이에 본 연구에서는 연약점성토층 상부에 경량성토재를 포설하고 모형 지지력 실험과 유한요소해석을 실시하였으며, 그 결과를 바탕으로 경량성토재로서의 지지력 특성을 평가하였다. 실험결과 일반적인 성토재 보다 폐스티로폼을 이용한 성토재가 더욱 우수한 특성을 발휘하는 것으로 나타났다.

  • PDF

방염스티로폴 약제 개발과 방염판넬 생산시 물성에 관한 연구 (Studies on the Synthesis of Diphenylphenylamidophosphate for Flame retandant agents of EPS and It's the effect of Flame Retardandy and properties in panel production)

  • 이광우
    • 한국산업융합학회 논문집
    • /
    • 제4권2호
    • /
    • pp.185-191
    • /
    • 2001
  • Diphenylpropylamidophosphate(DPPAP) was synthesized as flame retardant for Expanded Polystyrene(EPS). Structure of DPPAP was investigated by the m, NMR, DSC. We make FR panels with EPS beads which treated with DPPAP and expanded by expand machines. FR panels were used in this study after formation by form machines and then cutting by cutting machines. The following conclusions were obtained: 1. The new synthetic agent was developed without the use of solvent such as pyridine or tertiary amine in the synthesis of DPPAP which served as flame retardant for EPS. 2. The flame retandancy effect of EPS treated with DPPAP was found excellent in LOI tests. 3. The properties of FR EPS panels treated with DPPAP did not difference.

  • PDF

EPS 비드를 사용한 경량기포콘크리트의 차열성능의 실험적 연구 (Experimental Study on the Heat Shielding Performance of Lightweight Foamed Concrete Using EPS beads.)

  • 홍상훈;송승리;유남규;정의인;김봉주
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.21-22
    • /
    • 2018
  • Foamed concrete is a porous concrete that is cured by mixing bubbles into cement slurry. It is lighter than ordinary concrete and is characterized by higher insulation. Lightweight foamed concerte is mainly used as a sandwich panel in Korea, and is also used as a refractory filler in fireproof safes. Studies on lightwight foamed concrete have been carried out on strength,density and thermal conductivity. However, it is confirmed that the research on the fire resistance performance is very limited. Based on this study, fire resistance of lightweight foamed concrete using expanded polystyrene beads is investigated.

  • PDF