• 제목/요약/키워드: enzyme resource

검색결과 188건 처리시간 0.023초

Effects of multi-enzyme supplementation in a corn and soybean meal-based diet on growth performance, apparent digestibility, blood characteristics, fecal microbes and noxious gas emission in growing pigs

  • Yin, Jia;Kim, In-Ho
    • 농업과학연구
    • /
    • 제46권1호
    • /
    • pp.1-10
    • /
    • 2019
  • The objective of this study was to determine the effect of multi-enzyme supplementation in a corn and soybean meal-based diet on the growth performance, apparent nutrient digestibility, blood profile, fecal microbes and noxious gas emission in growing pigs. A total of 80 crossbred [(Landrace ${\times}$ Yorkshire) ${\times}$ Duroc] growing pigs with an average body weight (BW) of $25.04{\pm}1.44kg$ were used in a 6-week experiment. The experimental treatments were as follows: CON, basal diet and; T1, basal diet + 100 mg/kg multi-enzyme. During the experiment, the pigs fed the diet with multi-enzyme supplementation had a higher gain to feed ratio (G/F) (p < 0.05) than the pigs fed the diet without multi-enzyme supplementation. On day 42, the pigs fed the diet with multi-enzyme supplementation had decreased $H_2S$ and $NH_3$ emissions (p < 0.05) than the pigs fed the diet without multi-enzyme supplementation. However, no effect was observed on nutrient digestibility, blood profiles and fecal microbes among the treatments (p > 0.05). In conclusion, it is suggested that multi-enzyme supplementation in a corn and soybean meal based diet can partly improve the growth performance and noxious gas emission of growing pigs.

Influence of enzyme mixture supplementation on growth performance, nutrient digestibility, and fecal score in growing pigs

  • Thamaraikannan, Mohankumar;Kim, In Ho
    • 농업과학연구
    • /
    • 제48권2호
    • /
    • pp.201-207
    • /
    • 2021
  • This study evaluated the influence of enzyme mixture supplementation on the growth performance, nutrient digestibility, and fecal score of growing pigs. A total of 72 pigs with an initial body weight of 20.23 ± 1.46 kg were randomly assigned to two treatments consisting of a basal diet and the basal diet supplemented with 0.5% enzyme mixture. During a 19-day trial, no significant difference was observed in the body weight (BW) and average daily feed intake (ADFI) of the pigs. However, a gradual increase in the average daily gain (ADG) was observed during the period from day 14 to day 19 and the overall period in pigs fed a diet supplemented with the 0.5% enzyme mixture (p < 0.10) as compared to the pigs that were fed the control diet. From days 4 to 14 and in the overall experiment, a gradual increase in the feed conversion ratio (FCR) (p < 0.10) was observed with the inclusion of 0.5% enzyme mixture supplementation. The nutrient digestibility of dry matter (DM), nitrogen (N), and energy were not affected by enzyme mixture supplementation. In addition, dietary supplementation with the enzyme mixture had no significant effects on the fecal score of growing pigs. In summary, supplementation with the enzyme mixture had beneficial effects on the ADG performance but failed to have a significant effect on growth performance (BW), nutrient digestibility, and fecal score.

토양으로부터 분리한 Bacillus sp. WRD-1이 생산하는 Extracellular Protease의 특성 (Characterization of Extracellular Protease of Bacillus sp. WRD-1 Isolated from Soil)

  • 옥민;김민석;서원석;차재영;조영수
    • 한국미생물·생명공학회지
    • /
    • 제28권6호
    • /
    • pp.329-333
    • /
    • 2000
  • Alkaline bacterium producing a high pro-tease activity at low temperature was isolated by using enrichment culture from soil samples and identified as Bacil-lus sp. WRD-1 Cell growth was maximal at 10 hours and the optimal initial pH and culture time of culture condition for enzyme production was pH 7 and 10 hours, respectively. Temperature range of high enzyme activity were $10~40^{\circ}C$. The optimal pH and temperature for the enzyme activity were pH9 and $30^{\circ}C$.

  • PDF

Production of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Malassezia pachydermatis G-14

  • Jeong, Seung-Chan;Kim, Jae-Ho;Kim, Na-Mi;Lee, Jong-Soo
    • Mycobiology
    • /
    • 제33권3호
    • /
    • pp.142-146
    • /
    • 2005
  • To produce a novel antihypertensive angiotensin I-converting enzyme (ACE) inhibitor from yeast, a yeast isolate, designated G-14 showing the highest ACE inhibitory activity was obtained and identified as Malassezia pachydermatis based on morphological, biochemical and cultural characteristics. The maximal extracellular ACE inhibitor production was obtained from M. pachydermatis G-14 when the strain was cultured in YEPD medium containing 0.5% yeast extract, 3.0% peptone and 2.0% glucose at $30^{\circ}C$ for 24 h and the final ACE inhibitory activity was 48.9% under the above condition.

Assessment on Antioxidant Potential and Enzyme Activity of Some Economic Resource Plants

  • Boo, Hee-Ock;Shin, Jeoung-Hwa;Shin, Ji-San;Choung, Eui-Su;Bang, Mi-Ae;Choi, Kyung-Min;Song, Won-Seob
    • 한국자원식물학회지
    • /
    • 제25권3호
    • /
    • pp.349-356
    • /
    • 2012
  • The antioxidant potential and enzyme activities in Salicornia herbacea, Corylopsis coreana, Erythronium japonicum, Phragmites communis, Momordica Charantia, Nelumbo nucifera, Salvia plebeia, Portulaca oleracea, Ficus carica, Citrus junos and Cornus officinalis were determined. Their antioxidant activities were measured using DPPH radical scavenging and nitrite scavenging activity. Enzyme activities in investigated plants were evaluated as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). The DPPH scavenging rate from 100 to 2500 $mgL^{-1}$ was the highest in the flower of Corylopsis coreana. However, it was not detected in most of the samples at concentration below 100 $mgL^{-1}$. The nitrite scavenging activity according to each kind of resource plants was significantly higher in the stem of Corylopsis coreana and leaf of Nelumbo nucifera. The root extract of Erythronium japonicum had the highest SOD enzyme activity of 94.0% while leaf of Salvia plebeia showed the lowest SOD enzyme activity of 30.4%. The activity of CAT and APX showed higher values in the stem of Corylopsis coreana, root of Erythronium japonicum and root of Phragmites communis in comparison with other plants. The activity of POD showed significantly high values in stem of Corylopsis coreana, Momordica Charantia and pericarp of Citrus junos extracts. The antioxidant enzyme activities differ significantly in different plants. In conclusion, we showed that Corylopsis coreana, Erythronium japonicum Cornus officinalis, and Momordica Charantia had the potent biological activities. Therefore, these plant resources showing antioxidant activity could be good materials for development of source of functional healthy food.

Bioconversion of Ginsenoside Rb1 to Compound K using Leuconostoc lactis DC201

  • Piao, Jin-Ying;Kim, Yeon-Ju;Quan, Lin-Hu;Yang, Dong-Uk;Min, Jin-Woo;Son, Seon-Heui;Kim, Sang-Mok;Yang, Deok-Chun
    • 한국자원식물학회지
    • /
    • 제24권6호
    • /
    • pp.712-718
    • /
    • 2011
  • Ginseng (Panax ginseng) is frequently used in Asian countries as a traditional medicine. The major components of ginseng are ginsenosides. Among these, ginsenoside compound K has been reported to prevent the formation of malignancy and metastasis of cancer by blocking the formation of tumor and suppressing the invasion of cancer cells. In this study, ginsenoside $Rb_1$ was converted into compound K, via secreted ${\beta}$-glucosidase enzyme from the Leuconostoc lactis DC201 isolated, which was extracted from Kimchi. The strain DC201 was suspended and cultured in MRS broth at $37^{\circ}C$. Subsequently, the residue from the cultured broth supernatant was precipitated with EtOH and then dissolved in 20 mM sodium phosphate buffer (pH 6.0) to obtain an enzyme liquid. Meanwhile, the crude enzyme solution was mixed with ginsenoside $Rb_1$ at a ratio of 1:4 (v/v).The reaction was carried out at $30^{\circ}C$ and 190 rpm for 72 hours, and then analyzed by TLC and HPLC. The result showed that ginsenoside Rb1 was transformed into compound K after 72 hours post reaction.

Development of a New Type of Recombinant Hyaluronidase Using a Hexahistidine; Possibilities and Challenges in Commercialization

  • Park, Chaeri;Song, Yun-Kyoung;Kim, Young-Hyun;Jung, Yena;Park, Young-Ho;Song, Bong-Seok;Eom, Taekil;Kim, Ju-Sung;Kim, Sang-Hyun;Kim, Ji-Su;Kim, Sun-Uk;Lee, Sang-Rae;Kim, Ekyune
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권8호
    • /
    • pp.1310-1315
    • /
    • 2019
  • Hyaluronidases enhance therapeutic drug transport by breaking down the hyaluronan barrier to lymphatic and capillary vessels, facilitating their tissue absorption. Commercially available hyaluronidases are bovine in origin; however, they pose risks such as bovine spongiform encephalopathy. The present study aimed to develop a novel, highly active hyaluronidase and assess its function. Therefore, in order to find the most efficient active hyaluronidase, we produced several shortened hyaluronidases with partial removal of the N- or C-terminal regions. Moreover, we created an enzyme that connected six histidines onto the end of the hyaluronidase C-terminus. This simplified subsequent purification using $Ni^{2+}$ affinity chromatography, making it feasible to industrialize this highly active recombinant hyaluronidase which exhibited catalytic activity equal to that of the commercial enzyme. Therefore, this simple and effective isolation method could increase the availability of recombinant hyaluronidase for research and clinical purposes.

Aspergillus 속 곰팡이를 이용한 액체종국 제조 및 밀누룩의 품질특성 (Quality Characteristics of wheat Nuruk and Optimum Condition of Liquid Starters for Aspergillus sp.)

  • 최정실;정석태;김주연;최지호;최한석;여수환
    • 한국미생물·생명공학회지
    • /
    • 제39권4호
    • /
    • pp.357-363
    • /
    • 2011
  • 고역가 액체종국 제조 및 배양기술을 개발하기 위해, Aspergillus 속의 곰팡이(A. oryzae, A. niger)를 이용한 밀기울 첨가율 별(0, 5, 10, 15 및 20%) 배지를 이용한 액체종국을 제조하여 이들의 품질 특성을 조사하였다. 액체종국의 일반성분 및 효소활성(glucoamylase, acidic protease)을 조사한 결과, 배지에 밀기울 첨가량이 많을수록 균사체량이 많아졌을 뿐만 아니라 산도, 아미노산도도 증가하는 것을 알 수 있었고 액체종국에 첨가하는 밀기울 농도가 달라짐에 따라 각 균주의 효소활성이 바뀌는 것을 알 수 있었다. 또한, 효소활성에 따른 최적 배양시간은 곰팡이 종류에 따라 차이가 있었고 A. oryzae와 A. niger 곰팡이의 액체종국 배양은 10~15% 밀기울을 첨가하여 48~72시간 배양하는 최적조건을 규명하였다. 기존에 사용되었던 고체종국과 비교하여 밀입국제조에 종국으로써 적합한지를 구명하고자 A. oryzae와 A. niger를 사용한 고체종국을 접종한 밀누룩을 대조구로 하여 밀기울 10% 액체배지로 만든 액체종국의 접종량 별(1, 3, 5, 10%) 밀누룩의 배양시간 별(0, 15, 20, 36, 38, 40 hrs) 및 이화학적 특성과 효소활성(${\alpha}$-amylase, glucoamylase, acidic protease)변화를 비교하였다. 결론적으로 시간과 인력등의 경제적 가치가 많이 투입되는 고체종국 보다는 누룩 제조시 액체종국을 사용하는 것이 여러 가지 측면에서도 유리 하다고 여겨진다.

Characterization of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Saccharomyces cerevisiae

  • KIM, JAE-HO;LEE, DAE-HYOUNG;JEONG, SEOUNG-CHAN;CHUNG, KUN-SUB;LEE, JONG-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1318-1323
    • /
    • 2004
  • This study describes the purification and characterization of a novel antihypertensive angiotensin 1­converting enzyme (ACE) inhibitory peptide from Saccharomyces cerevisiae. Maximal production of the ACE inhibitor from Saccharomyces cerevisiae was obtained from 24 h of cultivation at $30^{\circ}C$ and its ACE inhibitory activity was increased by about 1.5 times after treatment of the cell-free extract with pepsin. After the purification of ACE inhibitory peptides with ultrafiltration, Sephadex G-25 column chromatography, and reverse-phase HPLC, an active fraction with an $IC_{50}$ of 0.07 mg and $3.5\%$ yield was obtained. The purified peptide was a novel decapeptide, showing very low similarity to other ACE inhibitory peptide sequences, and its amino acid sequence was Tyr-Asp-Gly-Gly-Val-Phe-Arg-Val-Tyr-Thr. The purified inhibitor competitively inhibited ACE and also showed a clear antihypertensive effect in spontaneously hypertensive rats (SHR) at a dosage of 1 mg/kg body weight.

Enzymatic Transformation of Ginsenoside Rb1 by Lactobacillus pentosus Strain 6105 from Kimchi

  • Kim, Se-Hwa;Min, Jin-Woo;Quan, Lin-Hu;Lee, Sung-Young;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제36권3호
    • /
    • pp.291-297
    • /
    • 2012
  • Ginsenoside (ginseng saponin), the principal component of ginseng, is responsible for the pharmacological and biological activities of ginseng. We isolated lactic acid bacteria from Kimchi using esculin agar, to produce ${\beta}$-glucosidase. We focused on the bio-transformation of ginsenoside. Phylogenetic analysis was performed by comparing the 16S rRNA sequences. We identified the strain as Lactobacillus (strain 6105). In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside Rb1 to catalyse the reaction. A carbon substrate, such as cellobiose, lactose, and sucrose, resulted in the highest yields of ${\beta}$-glucosidase activity. Biotransformations of ginsenoside Rb1 were analyzed using TLC and HPLC. Our results confirmed that the microbial enzyme of strain 6105 significantly transformed ginsenoside as follows: Rb1${\rightarrow}$gypenoside XVII, Rd${\rightarrow}$F2 into compound K. Our results indicate that this is the best possible way to obtain specific ginsenosides using microbial enzymes from 6105 culture.