• 제목/요약/키워드: enzyme kinetic

검색결과 294건 처리시간 0.026초

Hydrogen Peroxide, Its Measurement and Effect During Enzymatic Decoloring of Congo Red

  • Woo, Sung-Whan;Cho, Jeung-Suk;Hur, Byung-Ki;Shin, Dong-Hoon;Ryu, Keun-Gap;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권5호
    • /
    • pp.773-777
    • /
    • 2003
  • The color of Congo red hinders the spectrometric measurements of a concentration of hydrogen peroxide and enzyme activity (Horseradish peroxidase; HRP) during enzymatic decoloring of Congo red. In this study, a method was developed to measure peroxidase activity and hydrogen peroxide concentration in the presence of Congo red. The oxidation product of HRP/hydrogen peroxide and ABTS(2,2'-azino-bis-(3-ethylbenzotriazoline-6-sulfonic acid)) formed a dark green color. The spectrum of this product showed absorption bands at 420 nm and 734 nm. When compared with the Congo red spectrum, the absorption at 734 nm of this product did not overlap with Congo red, thus making the hydrogen peroxide measurement possible even in the presence of Congo red. Kinetic study of decoloring of Congo red performed by this method showed that the decoloring reaction followed the Michaelis-Menten kinetics. Pulse feeding of hydrogen peroxide, upon depletion, significantly increased the decoloring of Congo red. This result shows that this newly developed technique can monitor, predict, and improve the enzymatic decoloring process.

Characterization of β-glucosidase from Brown Rot Fungus, Laetiporus sulphureus

  • Lee, Jae-Won;Park, Jun-Yeong;Gwak, Ki-Seob;Koo, Bon-Wook;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권5호
    • /
    • pp.100-108
    • /
    • 2007
  • $\beta$-Glucosidase from Laetiporus sulphureus among the enzymes related to lignocellulosic biomass degradation to sugars for using alternative bioethanol production was characterized. The highest activity of $\beta$-glucosidase was obtained on cellobiose at shaking culture. For the characterization and purification of $\beta$-glucosidase culture solution was concentrated and then purified by FPLC using ion exchange and size exclusion column. According to the results of SDS-PAGE, native PAGE and microfluidic system of purified enzyme, protein band was observed at about 132 kDa. Optimal pH and temperature of purified $\beta$-glucosi-dase were 5.0 and $60^{\circ}C$, respectively. In the kinetic properties of $\beta$-glucosidase on various substrates such as sophorose, gentiobiose and cellobiose, $K_m$ was 0.81, 1.07 and 1.70 mM, respectively.

Characterisation of multiple substrate-specific (d)ITP/(d)XTPase and modelling of deaminated purine nucleotide metabolism

  • Davies, Oluwafemi;Mendes, Pedro;Smallbone, Kieran;Malys, Naglis
    • BMB Reports
    • /
    • 제45권4호
    • /
    • pp.259-264
    • /
    • 2012
  • Accumulation of modified nucleotides is defective to various cellular processes, especially those involving DNA and RNA. To be viable, organisms possess a number of (deoxy)nucleotide phosphohydrolases, which hydrolyze these nucleotides removing them from the active NTP and dNTP pools. Deamination of purine bases can result in accumulation of such nucleotides as ITP, dITP, XTP and dXTP. E. coli RdgB has been characterised as a deoxyribonucleoside triphosphate pyrophosphohydrolase that can act on these nucleotides. S. cerevisiae homologue encoded by YJR069C was purified and its (d)NTPase activity was assayed using fifteen nucleotide substrates. ITP, dITP, and XTP were identified as major substrates and kinetic parameters measured. Inhibition by ATP, dATP and GTP were established. On the basis of experimental and published data, modelling and simulation of ITP, dITP, XTP and dXTP metabolism was performed. (d)ITP/(d)XTPase is a new example of enzyme with multiple substrate-specificity demonstrating that multispecificity is not a rare phenomenon

$\alpha$-Amylase 저해제 생산 방선균의 선별과 분류 및 $\alpha$-Amylase저해제의 분리와 Kinetics 연구 (Screening and Classification of Actinomycetes Producing $\alpha$-Amylase Inhibitors and the Isolation, their Kinetic Studies of $\alpha$-Amylase Inhibitors)

  • 김제학;김정우;김하원;심미자;최응칠;김병각
    • 한국미생물·생명공학회지
    • /
    • 제13권3호
    • /
    • pp.223-232
    • /
    • 1985
  • 한국의 토양에서 분리한 균 중 bacterial $\alpha$-amylase에 저해효과가 있는 균주를 분리하여 DMC-47 균주라 명명하였고, 이 균주는 Streptomyces 속의 균임을 확인하였다. 이 균주를 옥수수 전분 배지에서 진탕 배양한 결과 4일후에 최대 저해 효과를 나타내었다. 이 균주가 생성한 저해물질은 bacterial $\alpha$-amylase, pancreatic $\alpha$-amylase, salivary $\alpha$-amylase, glucoamylase에 저해효과를 보였고, $\beta$-amylase 에는 저해효과가 없었다.

  • PDF

부타디엔 고무로 결합된 탄소반죽 바이오센서를 이용한 과산화수소의 전기화학적 정량 (Electrochemical determination of hydrogen peroxide using carbon paste biosensor bound with butadiene rubber)

  • 윤길중
    • 분석과학
    • /
    • 제23권5호
    • /
    • pp.505-510
    • /
    • 2010
  • 톨루엔에 녹인 폴리부타디엔을 탄소가루의 결합재로 사용하였을 때, 탄소반죽은 전극 제작 후 용매 증발에 의하여 기계적 물성을 보였으며, 이 성질은 탄소반죽전극 실용화의 선행조건을 충족시키는 것이었다. 부타디엔 고무를 결합재로 사용하여 새로운 효소전극을 제작하고, 그것이 정량적인 전기화학적 행동을 보이는지 확인하기 위하여 여러 가지 전기화학 속도론적 파라메터 즉 대칭인자, 교환전류밀도, 이중층의 축전용량, 시간상수, 최대전류, Michaelis 상수 등을 구하였다. 이 결과들은 부타디엔 고무가 탄소반죽전극 실용화에 추천할 만한 위한 결합재임을 보여 주는 것이었다.

Stromelysin-1에 의한 펩타이드 가수분해에서 pH와 기질특이성 연구 (Distinctive pH Dependence and Substrate Specificity of Peptide Hydrolysis by Human Stromelysin-1)

  • 차재호
    • 생명과학회지
    • /
    • 제10권2호
    • /
    • pp.210-217
    • /
    • 2000
  • A kinetic profile of the catalytic domain of stromelysin-1 (SCD) using the fluorescent peptide substrate has been determined by the stopped-flow technique. The pH profile has a pH optimum of about 5.5 with an extended shoulder above pH 7. Three pKa values, 5.0, 5.7, and 9.8 are found for the free enzyme state and two pH independent Kcat/Km values of 4.1$\times$104 M-1 s-1 and 1.4$\times$104 M-1 s-1 at low and high pH, respectively. The profile is quite different in shape with other MMP family which has been reported, having broad pH optimum with two pKa values. The substrate specificity of SCD towards fluorescent heptapeptide substrates has been also examined by thin layer chromatography. The cleavage sites of the substrates have been identified using reverse-phase HPLC method.SCD cleaves Dns-PLA↓L↓WAR and Dns-PLA↓L↓FAR at two positions. However, the Dns-PLA↓LRAR, Dns-PLE↓LFAR, adn Dns-PLSar↓LFAR are cleaved exclusively at one bond. The double cleavages of Dns-PLALWAR and Dns-PLALFAR by SCD are in marked contrast to the close structurally related matrilysin. A notable feature of SCD catalysis agrees with the structural data that the S1' pocket of SCD is deeper than that of matriysin. The differences observed between SCD and matrilysin may form the basis of understanding the structural relationships and substrate specificities of the MMP family in vivo.

  • PDF

Inhibitory Effect of Dalbergioidin Isolated from the Trunk of Lespedeza cyrtobotrya on Melanin Biosynthesis

  • Baek, Seung-Hwa;Kim, Jin-Hee;Kim, Dong-Hyun;Lee, Chan-Yong;Kim, Ji-Young;Chung, Dae-Kyun;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.874-879
    • /
    • 2008
  • Tyrosinase is a key enzyme for melanin biosynthesis, and hyperpigmentation disorders are associated with abnormal accumulation of melanin pigments, which can be reduced by treatment with depigmenting agents. The methanol extract of Lespedeza cyrtobotrya $M_{IQ}$ showed inhibitory activity against mushroom tyrosinase. The active compound was purified from the methanol extract of L. cyrtobotrya, followed by several chromatographic methods, and identified as dalbergioidin (DBG) by spectroscopic methods. The results showed that DBG exhibited tyrosinase inhibitory activity with an $IC_{50}$ of $20\;{\mu}M$. The kinetic analysis of tyrosinase inhibition revealed that DBG acted as a noncompetitive inhibitor. In addition, DBG showed a melanin biosynthesis inhibition zone in the culture plate of Streptomyces bikiniensis that has commonly been used as an indicator organism. Furthermore, $27\;{\mu}M$ DBG decreased more than 50% of melanin contents on the pigmentation using the immortalized mouse melanocyte, melan-a cell.

Saccharomyces cerevisiae의 Nonmitochondrial Citrate synthase 분리 및 특성 (Purification and Characterization of Nonmitochondrial Citrate Synthase from Saccharomyces cerevisiae)

  • 조남석;김광수;맹필재
    • 미생물학회지
    • /
    • 제29권4호
    • /
    • pp.230-237
    • /
    • 1991
  • Citrate synthase 1 (mitochondrial) and citrate synthase 2 (nonmitochondrial) were purified from Saccharomyces cerevisiae. The physical and enzymatic characteristics of citrate synthase 2 were ananlyzed in comparison with citrate synthase 1. Both isoenzymes were shown to be dimeric proteins of identical subunits, and the molecular weights of the subunits were estimated to be 48.3kDa for citrate synthase 1 and 47.0kDa for citrate synthase 2, respectively. The optimal pH value for enzyme activity was pH 7.5 for both isoenzymes. However, the optimal temperature for the activity was strikingly different; while the activity of citrate synthase 1 reached its peak at 65.deg.C, that of citrate synthase 2 was maximal at 40.deg.C. Citrate synthase 2 showed much lower thermal and pH stability than citrate synthase 1. In addition, citrate synthase 2 was affected much more by the metal ions such as $Zn^{2+}$ , $Mn^{2+ , and $Co^{2+} than citrate synthase 1. Among the several possible regulatory metabolites tested, ATP showed the strongest inhibitory effect on both enzymes. ADP and NADH were found to have greater effect on citrate synthase 2 than on citrate synthase 1. Kinetic analysis revealed that citrate synthase 2 has approximately 7- and 3.5-fold lower affinity to acetyl CoA and to oxaloacetate, respectively, than citrate synthase 1.

  • PDF

미생물 성장 공정에서의 기질 저해에 관한 modified Haldane 모델의 이론적 고찰 (Theoretical Consideration of the Modified Haldane Model of the Substrate Inhibition in the Microbial Growth Processes)

  • 황영보
    • 공업화학
    • /
    • 제19권3호
    • /
    • pp.277-286
    • /
    • 2008
  • 본 논문은 미생물 성장 공정에서의 기질 저해에 관한 modified Haldane 모델의 이론적 유도를 다룬다. 생물학적 개념인 기질-수용체 복합체의 작동 메커니즘을 바탕으로 새로운 미생물학적 동특성인 N-중첩된 다중 기질 저해 모델의 유도와 더불어 일반화가 이론적으로 고찰되었는데, 이것은 효소 반응에서의 단순 기질 저해 메커니즘이 자연스럽게 확장된 것이다. 결과적으로, 본 기질 저해에 관한 modified Haldane 모델은 완전저해 기질농도라는 생물학적 상수를 포함하고 있는, 잘 설계된 4-파라메터 동특성 모델임이 밝혀졌다.

Identification of an Essential Tryptophan Residue Residue in Alliinase from Garlic (Allium sativum) by Chemical Modification

  • 진영남;최용훈;양철학
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권1호
    • /
    • pp.68-76
    • /
    • 2001
  • We have employed chemical modification to identify amino acids essential for the catalytic activity of alliinase (EC 4.4.1.4) from garlic (Allium sativum). Alliinase degrades S-alkyl-L cysteine sulfoxides, causing the characteristic odor of garlic. The activity of alliinase was rapidly and completely inactivated by N-bromosuccinimide(NBS) and slightly decreased by succinic anhydride and N-acetylimidazole. These results indicate that tryptophanyl, lysyl, and tyrosyl residues play an important role in enzyme catalysis. The reaction of alliinase with NBA yielded a characteristic decrease in both the absorbance at 280 nm and the intrinsic fluorescence at 332 nm with increasing reagent concentration of NBS, consistent with the oxidation of tryptophan residues. Kinetic analysis, fluorometric titration of tryptophans and correlation to residual alliinase activity showed that modification of only one residue present on alliinase led to complete inhibition of alliinase activity. To identify this essential tryptophan residue, we employed chemical modification by NBS in the presence and absence of the protecting substrate analogue, S-ethyl-L-cysteine (SEC) and N-terminal sequence analysis of peptide fragment isolated by reverse phase-HPLC. A fragment containing residues 179-188 was isolated. We conclude that Trp182 is essential for alliinase activity.