Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.4.259

Characterisation of multiple substrate-specific (d)ITP/(d)XTPase and modelling of deaminated purine nucleotide metabolism  

Davies, Oluwafemi (Doctoral Training Centre, The University of Manchester)
Mendes, Pedro (Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, The University of Manchester)
Smallbone, Kieran (Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, The University of Manchester)
Malys, Naglis (Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, The University of Manchester)
Publication Information
BMB Reports / v.45, no.4, 2012 , pp. 259-264 More about this Journal
Abstract
Accumulation of modified nucleotides is defective to various cellular processes, especially those involving DNA and RNA. To be viable, organisms possess a number of (deoxy)nucleotide phosphohydrolases, which hydrolyze these nucleotides removing them from the active NTP and dNTP pools. Deamination of purine bases can result in accumulation of such nucleotides as ITP, dITP, XTP and dXTP. E. coli RdgB has been characterised as a deoxyribonucleoside triphosphate pyrophosphohydrolase that can act on these nucleotides. S. cerevisiae homologue encoded by YJR069C was purified and its (d)NTPase activity was assayed using fifteen nucleotide substrates. ITP, dITP, and XTP were identified as major substrates and kinetic parameters measured. Inhibition by ATP, dATP and GTP were established. On the basis of experimental and published data, modelling and simulation of ITP, dITP, XTP and dXTP metabolism was performed. (d)ITP/(d)XTPase is a new example of enzyme with multiple substrate-specificity demonstrating that multispecificity is not a rare phenomenon
Keywords
Deamination; Mathematical modelling; Nucleoside triphosphate pyrophosphatase; Purine; S. cerevisiae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein, B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. I., Hedley, W. J., Hodgman, T. C., Hofmeyr, J. H., Hunter, P. J., Juty, N. S., Kasberger, J. L., Kremling, A., Kummer, U., Le Novère, N., Loew, L. M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E. D., Nakayama, Y., Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S., Spence, H. D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., Wang, J. and SBML Forum. (2003). The Systems Biology Markup Language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19, 524-531.   DOI   ScienceOn
2 Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P. and Kummer, U. (2006). COPASI-a COmplex PAthway SImulator. Bioinformatics 22, 3067-3074.   DOI   ScienceOn
3 Galperin, M. Y., Moroz, O. V., Wilson, K. S. and Murzin, A. G. (2006). House cleaning, a part of good housekeeping. Mol. Microbiol. 59, 5-19.   DOI   ScienceOn
4 Erijman, A., Aizner, Y. and Shifman, J. M. (2011). Multispecific recognition: mechanism, evolution and design. Biochemistry 50, 602-611.   DOI   ScienceOn
5 Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R. A., Gerstein, M. and Snyder, M. (2001). Global analysis of protein activities using proteome chips. Science 293, 2101-2105.   DOI   ScienceOn
6 Gelperin, D. M., White, M. A., Wilkinson, M. L., Kon, Y., Kung, L. A., Wise, K. J., Lopez-Hoyo, N., Jiang, L., Piccirillo, S., Yu, H., Gerstein, M., Dumont, M. E., Phizicky, E. M., Snyder, M. and Grayhack, E. J. (2005). Biochemical and genetic analysis of yeast proteome with moveabls ORF collection. Genes & Development 19, 2816-2826.   DOI   ScienceOn
7 Malys, N., Wishart, J. A., Oliver, S. G. and McCarthy, J. E. G. (2011). Protein production in S. cerevisiae for systems biology studies. Methods Enzymol. 500, 197-212.   DOI   ScienceOn
8 Alexander, R. R., Griffiths, J. M. and Wilkinson, M. L. (1985). Basic Biochemical Methods. pp. 241. John Wiley & Sons Inc., New York, U.S.A.
9 Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O'Shea, E. K. and Weissman, J. S. (2003). Global analysis of protein expression in yeast. Nature 425, 737-741.   DOI   ScienceOn
10 Cheng, Y. and Prusoff, W. H. (1973). Relationship between inhibition constant (Ki) and the concentration of inhibitor which causes 50% inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099-3108.   DOI   ScienceOn
11 Jorgensen, P., Nishikawa, J. L., Breitkreutz, B. J. and Tyers, M. (2002). Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395-400.   DOI   ScienceOn
12 Noskov, V. N., Staak, K., Shcherbakova, P. V., Kozmin, S. G., Negishi, K., Ono, B. C., Hayatsu, H. and Pavlov, Y. I. (1996). HAM 1, the gene controlling 6-N-hydroxylaminopurine sensitivity and mutagenesis in the yeast Saccharomyces cerevisiae. Yeast 12, 17-29.   DOI
13 Bochnert, B. R. and Ames, B. N. (1982). Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J. Biol. Chem. 257, 9759-9769.
14 Vanderheiden, B. S. (1970). Human erythrocyte "ITPase": an ITP pyrophosphohydrolase. Biochim. Biophys. Acta 215, 555-558.   DOI   ScienceOn
15 Rafty, L. A., Schmidt, M. T., Perraud, A. L., Scharenberg, A. M. and Denu, J. M. (2002). Analysis of O-acetyl-ADP-ribose as a target for Nudix ADP-ribose hydrolases. J. Biol. Chem. 277, 47114-47122.   DOI   ScienceOn
16 Gadsden, M. H., McIntosh, E. M., Game, J. C., Wilson, P. J. and Haynes, R. H. (1993). dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae. EMBO J. 12, 4425-4431.
17 Tchigvintsev, A., Singer, A. U., Flick, R., Petit, P., Brown, G., Evdokimova, E., Savchenko, A. and Yakunin, A. F. (2011). Structure and activity of the Saccharomyces cerevisiae dUTP pyrophosphatase DUT1, an essential housekeeping enzyme. Biochem. J. 437, 243-253.   DOI   ScienceOn
18 Malys N. and McCarthy, J. E. (2006) Dcs2, a novel stress-induced modulator of m7GpppX pyrophosphatase activity that locates to P bodies. J. Mol. Biol. 363, 370-382.   DOI   ScienceOn
19 Kennedy, E. J., Pillus, L. and Ghosh, G. (2005). Pho5p and newly identified nucleotide pyrophosphatases/phosphodiesterases regulate extracellular nucleotide phosphate metabolism in Saccharomyces cerevisiae. Eukaryot. Cell 4, 1892-1901.   DOI   ScienceOn
20 Malys N., Carroll, K., Miyan, J., Tollervey, D. and McCarthy, J. E. (2004). The 'scavenger' m7GpppX pyrophosphatase activity of Dcs1 modulates nutrient-induced responses in yeast. Nucleic Acids Res. 32, 3590-3600.   DOI   ScienceOn
21 Keesey, J. K. Jr, Bigelis, R. and Fink, G. R. (1979). The product of the his4 gene cluster in Saccharomyces cerevisiae. A trifunctional polypeptide. J. Biol. Chem. 254, 7427-7433.
22 Nguyen, T., Brunson, D., Crespi, C. L., Penman, B. W., Wishnok, J. S. and Tannenbaum, S. R. (1992). DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc. Nat. Acad. Sci. U.S.A. 89, 3030-3034.   DOI   ScienceOn
23 Nakabeppu, Y., Sakumi, K., Sakamoto, K., Tsuchimoto, D., Tsuzuki, T. and Nakatsu, Y. (2006). Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids. Biol. Chem. 387, 373-379.   DOI   ScienceOn
24 Nakabeppu, Y., Tsuchimoto, D., Yamaguchi, H. and Sakumi, K. (2007). Oxidative damage in nucleic acids and Parkinson's disease. J. Neurosci. Res. 85, 919-934.   DOI   ScienceOn
25 Rai, P., Onder, T. T., Young, J. J., McFaline, J. L., Pang, B., Dedon, P. C. and Weinberg, R. A. (2009). Continuous elimination of oxidized nucleotides is necessary to prevent rapid onset of cellular senescence. Proc. Nat. Acad. Sci. U.S.A. 106, 169-174.   DOI   ScienceOn
26 Kong, Q. and Lin, C. L. (2010). Oxidative damage to RNA: mechanisms, consequences and diseases. Cell. Mol. Life Sci. 67, 1817-1829.   DOI   ScienceOn
27 Savchenko, A., Proudfoot, M., Skarina, T., Singer, A., Litvinova, O., Sanishvili, R., Brown, G., Chirgadze, N. and Yakunin, A. F. (2007). Molecular basis of the antimutagenic activity of the house-cleaning inosine triphosphate pyrophosphatase RdgB from Escherichia coli. J. Mol. Biol. 374, 1091-1103.   DOI   ScienceOn
28 Iyama, T., Abolhassani, N., Tsuchimoto, D., Nonaka, M. and Nakabeppu, Y. (2010). NUDT16 is a (deoxy)inosine diphosphatase and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest. Nucleic Acids Res. 38, 4834-4843.   DOI
29 Sakumi, K., Abolhassani, N., Behmanesh, M., Iyama, T., Tsuchimoto, D. and Nakabeppu, Y. (2010). ITPA protein, an enzyme that eliminates deaminated purine nucleoside triphosphates in cells. Mutation Res. 703, 43-50.   DOI   ScienceOn
30 Burgis, N. E. and Cunningham, R. P. (2007). Substrate specificity of RdgB protein, a deoxyribonucleoside triphosphate pyrophosphohydrolase. J. Biol. Chem. 282, 3531-3538.
31 Sancar, A. and Sancar, G. B. (1988). DNA repair enzymes. Ann. Rev. Biochem. 57, 29-67.   DOI   ScienceOn