• Title/Summary/Keyword: environmentally-friendly media

Search Result 44, Processing Time 0.028 seconds

Sampling and Selection Factors that Enhance the Diversity of Microbial Collections: Application to Biopesticide Development

  • Park, Jun-Kyung;Lee, Seung-Hwan;Lee, Jang-Hoon;Han, Songhee;Kang, Hunseung;Kim, Jin-Cheol;Kim, Young Cheol;McSpadden Gardener, Brian
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.144-153
    • /
    • 2013
  • Diverse bacteria are known to colonize plants. However, only a small fraction of that diversity has been evaluated for their biopesticide potential. To date, the criteria for sampling and selection in such bioprospecting endeavors have not been systematically evaluated in terms of the relative amount of diversity they provide for analysis. The present study aimed to enhance the success of bioprospecting efforts by increasing the diversity while removing the genotypic redundancy often present in large collections of bacteria. We developed a multivariate sampling and marker-based selection strategy that significantly increase the diversity of bacteria recovered from plants. In doing so, we quantified the effects of varying sampling intensity, media composition, incubation conditions, plant species, and soil source on the diversity of recovered isolates. Subsequent sequencing and high-throughput phenotypic analyses of a small fraction of the collected isolates revealed that this approach led to the recovery of over a dozen rare and, to date, poorly characterized genera of plant-associated bacteria with significant biopesticide activities. Overall, the sampling and selection approach described led to an approximately 5-fold improvement in efficiency and the recovery of several novel strains of bacteria with significant biopesticide potential.

Isolation and Characterization of Oligotrophic Bacteria Possessing Induced Systemic Disease Resistance against Plant Pathogens

  • Han, Song-Hee;Kang, Beom-Ryong;Lee, Jang-Hoon;Kim, Hyun-Jung;Park, Ju-Yeon;Kim, Jeong-Jun;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.68-74
    • /
    • 2012
  • Biocontrol microbes have mainly been screened among large collections of microorganisms $via.$ nutrient-rich $in$ $vitro$ assays to identify novel and effective isolates. However, thus far, isolates from only a few genera, mainly spore-forming bacilli, have been commercially developed. In order to isolate field-effective biocontrol microbes, we screened for more than 200 oligotrophic bacterial strains, isolated from rhizospheres of various soil samples in Korea, which induced systemic resistance against the soft-rot disease caused by $Pectobacterium$ $carotovorum$ SCC1; we subsequently conducted in $planta$ bioassay screening. Two oligotrophic bacterial strains were selected for induced systemic disease resistance against the $Tobacco$ $Mosaic$ $Virus$ and the gray mold disease caused by $Botrytis$ $cinerea$. The oligotrophic bacterial strains were identified as $Pseudomonas$ $manteilii$ B001 and $Bacillus$ $cereus$ C003 by biochemical analysis and the phylogenetic analysis of the 16S rRNA sequence. These bacterial strains did not exhibit any antifungal activities against plant pathogenic fungi but evidenced several other beneficial biocontrol traits, including phosphate solubilization and gelatin utilization. Collectively, our results indicate that the isolated oligotrophic bacterial strains possessing induced systemic disease resistance could provide useful tools as effective biopesticides and might be successfully used as cost-effective and preventive biocontrol agents in the field.

Soybean Oil-degrading Bacterial Cultures as a Potential for Control of Green Peach Aphids (Myzus persicae)

  • Kim, Seul-Ki;Kim, Seo-Ri;Choi, Min-Seok;Park, Chang-Eon;Kim, Young-Cheol;Kim, Kil-Yong;Whang, Kyung-Sook;Oh, Kyung-Taek;Kim, In-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1700-1703
    • /
    • 2007
  • Microorganisms capable of degrading crude oil were isolated and grown in soybean oil as a sole carbon source. The microbial cultures were used to control green peach aphids in vitro. Approximately 60% mortality of aphids was observed when the cultures were applied alone onto aphids. To examine the cultures as a pesticide formulation mixture, the cultures were combined with a low dose of the insecticide imidacloprid (one-fourth dose of recommended field-application rate) and applied onto aphids. The cultures enhanced significantly the insecticidal effectiveness of imidacloprid, which was higher than imidacloprid alone applied at the low dose. The isolated microorganisms exhibited high emulsifying index values and decreased surface tension values after being grown in soybean oil media. GC/MS analyses showed that microorganisms degraded soybean oil to fatty acids. The cultures were suggested to play the roles of wetting, spreading, and sticking agents to improve the effectiveness of imidacloprid. This is the first report on the control of aphids by using oil-degrading microbial cultures.

Study on Domestic Trends of Green Fuel Policy

  • Sangseop Lim;Sang-Mi Im;Seok-Hun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.183-189
    • /
    • 2024
  • Against the backdrop of IMO's stricter environmental regulations due to global warming, Europe's Fit for 55 plan, and other initiatives, the establishment of infrastructure for the supply of environmentally friendly marine fuels and policy analysis are more critical than ever. This study comprehensively analyzes existing research and policies on the supply of environmentally friendly marine fuels, as well as trends in regulations, industry responses, and the current status of infrastructure for the supply of environmentally friendly fuels, to draw insightful conclusions. The results show that the establishment of infrastructure for the supply of environmentally friendly fuels is as important as the introduction of environmentally friendly ships, due to the strengthening of environmental regulations. LNG is a viable option in the short term, but a transition to carbon-free fuels is necessary in the long run. In this regard, a strategic approach is needed to focus support on fuels that are advantageous to produce, considering domestic industrial conditions from a long-term perspective. Therefore, the government should actively promote infrastructure development through measures such as supporting the development and supply of environmentally friendly fuels, improving regulations and providing incentives, attracting private investment, and strengthening international cooperation. This study is expected to serve as a valuable resource for setting policy directions for the transition to an environmentally friendly maritime industry. Future research will include a comparative analysis of the economic viability of environmentally friendly fuels and basic research on the selection of fuels that are advantageous to Korea.

Biocontrol of Late Blight (Phytophthora capsici) Disease and Growth Promotion of Pepper by Burkholderia cepacia MPC-7

  • Sopheareth, Mao;Chan, Sarun;Naing, Kyaw Wai;Lee, Yong Seong;Hyun, Hae Nam;Kim, Young Cheol;Kim, Kil Yong
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.67-76
    • /
    • 2013
  • A chitinolytic bacterial strain having strong antifungal activity was isolated and identified as Burkholderia cepacia MPC-7 based on 16S rRNA gene analysis. MPC-7 solubilized insoluble phosphorous in hydroxyapatite agar media. It produced gluconic acid and 2-keto-gluconic acid related to the decrease in pH of broth culture. The antagonist produced benzoic acid (BA) and phenylacetic acid (PA). The authentic compounds, BA and PA, showed a broad spectrum of antimicrobial activity against yeast, several bacterial and fungal pathogens in vitro. To demonstrate the biocontrol efficiency of MPC-7 on late blight disease caused by Phyto-phthora capsici, pepper plants in pot trials were treated with modified medium only (M), M plus zoospore inoculation (MP), MPC-7 cultured broth (B) and B plus zoospore inoculation (BP). With the sudden increase in root mortality, plants in MP wilted as early as five days after pathogen inoculation. However, plant in BP did not show any symptom of wilting until five days. Root mortality in BP was markedly reduced for as much as 50%. Plants in B had higher dry weight, P concentration in root, and larger leaf area compared to those in M and MP. These results suggested that B. cepacia MPC-7 should be considered as a candidate for the biological fertilizer as well as antimicrobial agent for pepper plants.

Reuse of Yuza Seed By-product for Production of Aphicidal Rhamnolipid by Pseudomonas sp. EP-3 (Pseudomonas sp. EP-3 rhamnolipid 에 의한 진딧물 살충성 생산을 위한 유자씨앗 부산물의 재활용)

  • Lim, Da Jung;Park, Tae Hyun;Yang, Si Young;Kim, Jin Cheol;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.36-42
    • /
    • 2017
  • BACKGROUND: Yuza seed by-product has been produced in a large amount from the agricultural farms in the southern area of Korea. It has been mostly abandoned after commercial process for the production of juice, jam and tea. The study on the reuse of the yuza seed by-product has received much attention as a bio-resource material for the production of active compound in agriculture. METHODS AND RESULTS: Insecticidal rhamnolipid-producing Pseudomonas sp. EP-3 was grown in mineral salt media with the yuza seed by-product at 2, 20, 50 and 100 g/L. The growth of EP-3 was accompanied by a increase in insecticidal activity against green peach aphid. The highest insecticidal activity was observed when EP-3 was grown in the medium containing 50 g/L of the seed sample, producing approximately 996 mg/L of rhamnolipid at 96 h. Palmitic acid, stearic acid, oleic acid and linoleic acid were determined as the major fatty acids of the seed sample. The EP-3 cultures grown on the fatty acid mixture extracted from the seed sample showed a aphid mortality similar to that of cultures grown on the seed sample. The EP-3 cultures grown on 50 g/L of the seed sample showed aphid mortality more than 90% under greenhouse conditions. CONCLUSION: This study suggested that the yuza seed by-product may be used as a renewable material for microbial production of rhamnolipid against green peach aphid.

Optimal Medium Composition Suitable for Enhancement of Biofertilizer's Shelf Life

  • Lee, Yong-Seong;Park, Yun-Suk;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.456-460
    • /
    • 2016
  • Biofertilizers are increasingly available in the market as one of the alternatives to chemical fertilizers. The supply of a high number of viable microorganisms is important for farmers. Lysobacter capsici YS1215 producing chitinases and gelatinases, isolated from soil in Korea, was evaluated for the establishment of an optimal medium condition of its shelf life under an in vitro condition. In this study, the population density of a biofertilizer (L. capsici YS1215) in media containing crab shell and gelatin powder (M1, M2, M3 and M4) was observed to be higher than that of populations grown in TSB (Tryptic soy broth) media (M5, M6 and M7) during experimental period. In addition, the population density at 11 months was over $10^6\;CFU\;mL^{-1}$ in M1, M3 and M4, but under $10^6\;CFU\;mL^{-1}$ in M2, M5, M6 and M7. The best optimal medium for the shelf life was M1 ($2.6{\times}10^6\;CFU\;mL^{-1}$) containing both chitinous and gelatinous materials at 11 months. Therefore, this study provided results of the appropriate medium composition for the enhancement of the shelf life of L. capsici YS1215.

Ionic Liquids: An Environmentally Friendly Media for Nucleophilic Substitution Reactions

  • Jorapur, Yogesh R.;Chi, Dae-Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.345-354
    • /
    • 2006
  • Ionic liquids are alternative reaction media of increasing interest and are regarded as an eco-friendly alternatives, of potential use in place of the volatile organic solvents typically used in current chemical processing methods. They are emerging as the smart and excellent solvents, which are made of positive and negative ions that they are liquids near room temperature. The nucleophilic substitution reaction is one of the important method for inserting functional groups into a carbon skeleton. Many nucleophilic substitution reactions have been found with enhanced reactivity and selectivity in ionic liquid. In this review, some recent interesting results of nucleophilic substitution reactions such as hydroxylations, ether cleavages, carbon-X (X= carbon, oxygen, nitrogen, fluorine) bond forming reactions, and ring opening of epoxides in ionic liquids are discussed.

Characteristics of soil and eco-friendly media for improving the filterability and water quality in soil filtration (하천수질정화용 토양여과의 여과용량 증대와 수질 개선을 위한 친환경 여재 특성 비교)

  • Ki, Dong-Won;Cho, Kang-Woo;Won, Se-Yoen;Song, Kyung-Guen;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.453-462
    • /
    • 2010
  • Nowadays, the challenges of ensuring good water quality and quantity of river are becoming more important for human society, but there has been troublesome for purifying river water. In this study, we performed the fundamental study of a river water treatment system using riverside soil and eco-friendly optimal media for improving river water quality and can also treat a large amount of river water. As the results of the physical and chemical characterization of the two different soils (Kyungan and Chungrang, The Republic of Korea), which were collected from real stream sides in the Han River basin, and five kinds of media (zeolite, perlite, steel slag, woodchip and mulch), both soils were all classified as a sand, and effective size ($D_{10}$) and uniformity coefficient (U) of the soil were about 0.2 mm and 4 or so, respectively. Through the batch and column experiments with the soil and eco-friendly media, zeolite and mulch were found to be efficient for decreasing nitrogen. In addition, steel slag was especially superior to the other media for phosphorus removal. From soil reforming tests volume ratios were 2.8, 1, and 1 of Kyungan soil, zeolite, and steel slag hydraulic conductivity of mixed soil was increased $1.30{\times}10^{-2}$ from $2.85{\times}10^{-3}$ of Kyungan soil, and the removal efficiencies of nitrogen and phosphorus were also improved. These results show that reforming of the soil enhanced the purification of a large amount of water, and zeolite, mulch, and steel slag might be facilitated as proper functional media.

Synthesis of an Environmentally Friendly Phenol-Free Resin for Printing Ink

  • Ha, Young-Baeck;Jin, Ming Yu;Oh, Sung-Sang;Ryu, Do-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3413-3416
    • /
    • 2012
  • Phenol-free resin was synthesized and its printing ink properties were investigated. The phenol-free resin was produced by esterification of poly phthalate and Diels-Alder adduct of rosin anhydride. Compared to rosin modified phenolic resin, eco-friendly phenol-free resin showed better vehicle properties in terms of gloss, yellowing, runability, and storage stability. The results suggest the utility of phenol-free resin instead of conventional rosin modified phenolic resin.