DOI QR코드

DOI QR Code

Pseudomonas sp. EP-3 rhamnolipid 에 의한 진딧물 살충성 생산을 위한 유자씨앗 부산물의 재활용

Reuse of Yuza Seed By-product for Production of Aphicidal Rhamnolipid by Pseudomonas sp. EP-3

  • 임다정 (전남대학교 농화학과, 친환경농업연구소) ;
  • 박태현 (LG 팜한농(주)) ;
  • 양시영 (전남대학교 농화학과, 친환경농업연구소) ;
  • 김진철 (전남대학교 농화학과, 친환경농업연구소) ;
  • 김인선 (전남대학교 농화학과, 친환경농업연구소)
  • Lim, Da Jung (Department of Agriculture chemistry, Institute of Environmentally Friendly Agriculture, Chonnam National University) ;
  • Park, Tae Hyun (Crop Protection R&D Center, LG Farmhannong) ;
  • Yang, Si Young (Department of Agriculture chemistry, Institute of Environmentally Friendly Agriculture, Chonnam National University) ;
  • Kim, Jin Cheol (Department of Agriculture chemistry, Institute of Environmentally Friendly Agriculture, Chonnam National University) ;
  • Kim, In Seon (Department of Agriculture chemistry, Institute of Environmentally Friendly Agriculture, Chonnam National University)
  • 투고 : 2017.02.09
  • 심사 : 2017.03.24
  • 발행 : 2017.03.31

초록

BACKGROUND: Yuza seed by-product has been produced in a large amount from the agricultural farms in the southern area of Korea. It has been mostly abandoned after commercial process for the production of juice, jam and tea. The study on the reuse of the yuza seed by-product has received much attention as a bio-resource material for the production of active compound in agriculture. METHODS AND RESULTS: Insecticidal rhamnolipid-producing Pseudomonas sp. EP-3 was grown in mineral salt media with the yuza seed by-product at 2, 20, 50 and 100 g/L. The growth of EP-3 was accompanied by a increase in insecticidal activity against green peach aphid. The highest insecticidal activity was observed when EP-3 was grown in the medium containing 50 g/L of the seed sample, producing approximately 996 mg/L of rhamnolipid at 96 h. Palmitic acid, stearic acid, oleic acid and linoleic acid were determined as the major fatty acids of the seed sample. The EP-3 cultures grown on the fatty acid mixture extracted from the seed sample showed a aphid mortality similar to that of cultures grown on the seed sample. The EP-3 cultures grown on 50 g/L of the seed sample showed aphid mortality more than 90% under greenhouse conditions. CONCLUSION: This study suggested that the yuza seed by-product may be used as a renewable material for microbial production of rhamnolipid against green peach aphid.

키워드

참고문헌

  1. Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.
  2. Abouseoud, M., Maachi, R., Amrane, A., Boudergua, S., & Nabi, A. (2008). Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Journal of Desalination, 223, 143-151. https://doi.org/10.1016/j.desal.2007.01.198
  3. Bouallagui, H., Torrijos, M., Godon, J. J., Moletta, R., Cheikh, R. B., Touhami, Y., Delgenes, J. P., & Hamdi, M. (2004). Two-phases anaerobic digestion of fruit and vegetable wastes: bioreactors performance. Biochemical Engineering Journal, 21, 193-197. https://doi.org/10.1016/j.bej.2004.05.001
  4. Carvalho, F. P. (2006). Agriculture, pesticides, food security and food safety. Environmental Science and Policy, 9, 685-692. https://doi.org/10.1016/j.envsci.2006.08.002
  5. Chayabutra, C., Wu, J., & Ju, L. (2001). Rhamnolipid production by Pseudomonas aeruginosa under denitrification: Effects of limiting nutrients and carbon substrates. Biotechnology and Bioengineering, 72, 25-33. https://doi.org/10.1002/1097-0290(20010105)72:1<25::AID-BIT4>3.0.CO;2-J
  6. Choi, H. K., So, I. Y., & Park, K. H. (1984). Studies on the correlation between virus diseases and aphid vectors in radish fields. Korean Journal of Plant Protection, 23, 28-36.
  7. Deepika, K. V., Kalam, S., Sridhar, R. R., Podile, A. R., & Bramhachari, P. V. (2016). Optimization of rhamnolipid biosurfactant production by mangrove sediment bacterium Pesudomonas aeruginosa KVD-HR42 using response surface methodology. Biocatalysis and Agricultural Biotechnology, 5, 38-47. https://doi.org/10.1016/j.bcab.2015.11.006
  8. Gema, H., Kavadia, A., Dimou, D., Tsagou, V., Komaitis, M., & Aggelis, G. (2002). Production of $\gamma$-linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peel. Applied Microbiology and Biotechnology, 58, 303-307. https://doi.org/10.1007/s00253-001-0910-7
  9. George, S., & Jayachandran, K. (2009). Analysis of rhamnolipid biosurfactant produced through submerged fermentation using orange fruit peelings as sole carbon source. Applied Biochemistry and Biotechnology, 158, 694-705. https://doi.org/10.1007/s12010-008-8337-6
  10. George, S., & Jayachandran, K. (2012). Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. Journal of Applied Microbiology, 114, 373-383.
  11. Goettel, M. S., Koike, M., Kim, J. J., Aiuchi, D., Shinya, R., & Brodeur, J. (2008). Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. Journal of Invertebrate Pathology, 98, 256-261. https://doi.org/10.1016/j.jip.2008.01.009
  12. Grohmann, K., & Baldwin, E. A. (1994). Fermentation of Galacturonic acid and other sugars in orange peel hydrolysates by the ethanologenic strain of Escherichia coli. Biotechnology Letters, 16(3), 281-286. https://doi.org/10.1007/BF00134626
  13. Isman, M. B. (2005). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45-66.
  14. Jeong, T. Y., Lee, J. H., Chung, H. K., Cha, H. J., & Choi, S. S. (2009). Mathane production using peel-type fruit wastes and sewage sludge in batch anaerobic digestion process. Journal of Korean Society of Industrial and Engineering Chemistry, 20, 542-546.
  15. Kim, S. K., Kim, Y. C., Lee, S., Kim, J. C., Yun, M. Y., & Kim, I. S. (2011). Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach Aphid (Myzus persicae). Journal of Agricultural and Food Chemistry, 59, 934-938. https://doi.org/10.1021/jf104027x
  16. Kim, S. K., Kim, S. R., Choi, M. S., Park, C. E., Kim, Y. C., Kim, K. Y., Whang, K. S., Oh, K. T., & Kim, I. S. (2007). Soybean oil-degrading bacterial cultures as a potential for control of green peach aphid (Myzus persicae). Journal of Microbiology and Biotechnology, 17, 1700-1703.
  17. Lee, H., Kim, Y., Shin, D., & Sun, B. (1987) Aroma components in korean citron (Citrus medica). Korean Journal of Food Science and Technology, 19, 361-365.
  18. Mata-Sanddoval, J. C., Karns, J., & Torrents, A. (2001) Effects of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2. Microbiological Research, 155, 249-256. https://doi.org/10.1016/S0944-5013(01)80001-X
  19. Nga, L. T., & Kumar, P. (2008). Contributions of parasitosis and Bacillus thuringiensis to the management of Diamondback Moth in highland crucifer production in Da Lat, Vietnam. Journal of Asia-Pacific Entomology, 11, 59-64. https://doi.org/10.1016/j.aspen.2008.05.002
  20. Pardo-Lopez, L., Soberon, M., & Bravo, A. (2013). Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews, 37, 3-22. https://doi.org/10.1111/j.1574-6976.2012.00341.x
  21. Pereira, J. F. B., Gundina, E. J., Doria, M. L., Domingues, M. R., Rodrigues, L. R., Teixeira, J. A., & Coutinho, J. A. P. (2012) Characterization by electrospray ionization and tandem mass spectrometry of rhamnolipids produced by two Pseudomonas aeruginosa strains isolated from Brazilian crude oil. European Journal of Mass Spectrometry, 18, 399-406. https://doi.org/10.1255/ejms.1194
  22. Ron, E. Z., & Rosenberg, E. (2002). Biosurfactants and oil bioremediation. Current Opinions in Biotechnology, 13, 249-252. https://doi.org/10.1016/S0958-1669(02)00316-6
  23. Seo, M. J., Jang, J. K., Kang, E. J., Kang, M. K., Kim, N. S., Yu, Y. M., & Youn, Y. N. (2005). Feeding Behavior in the plant tissues with green peach aphid (Myzus persicae, Aphididae; Homoptera) using EPG thchnique. Korean Journal of Applied Entomology, 44, 271-276.
  24. Silva, A. X., Bacigalupe, L. D., Luna-Rudloff, M., & Figueroa, C. C. (2012). Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) II: Costs and benefits. Journal of the Plos One, 7, e36810. https://doi.org/10.1371/journal.pone.0036810
  25. Thavasi, R., Jayalakshi, S., & Banat, I. M. (2011). Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresource Technology, 102, 3366-3372. https://doi.org/10.1016/j.biortech.2010.11.071
  26. Wilson, J. S., & Otsuki, T (2004). To spray or not to spray: pesticides, banana exports, and food safety. Food Policy, 29, 131-146. https://doi.org/10.1016/j.foodpol.2004.02.003