• Title/Summary/Keyword: environmental microbiology

Search Result 1,769, Processing Time 0.028 seconds

Conceptual Approaches to Training Specialists Using Multimedia Technologies

  • Shchyrbul, Oleksandr;Babalich, Viktoriya;Mishyn, Sergii;Novikova, Viktoriia;Zinchenko, Lina;Haidamashko, Iryna;Kuchai, Oleksandr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.123-130
    • /
    • 2022
  • Modernization of the educational sector requires globalization, democratization, and the transition to an information technology society. The main goal of education at the present stage is to solve the problem of ensuring the priority of the development of education and science. In modern conditions, the quality of training of qualified specialists is becoming particularly relevant. The great role of teacher education is emphasized by its main goal, which is to train specialists who can ensure the versatile and innovative development of a person as a person and the highest value of society, its mental, physical and aesthetic abilities, high moral qualities, and, consequently, the enrichment on this basis of the intellectual, creative and cultural potential of the people. Among the strategic tasks of modernizing higher education is to ensure informatization of the educational process and access to International Information Systems. The essence of the concept of multimedia is clarified. In the context of media education, multimedia lists a number of functions: informational, interpretive, cultural, entertainment, and educational. The need to meet the needs outlined in the article in the conditions of informatization of the educational process requires the teacher to have knowledge and skills in the field of multimedia pedagogical technologies, knowledge of advanced methods and means of modern science. It is considered what relevant concepts of media education have been developed and are being developed in Ukraine and form an important basis for the modernization of education, which will contribute to the construction of an information society in the country and the formation of civil society. Distance learning is considered - the most democratic form of education that allows broad segments of society to get an education. Distance learning methods are used in higher education institutions, in school education, in the system of advanced training of teachers, in the system of training managerial personnel.

Characteristics of Water Environment on Manun Reservoir (중산간 농업용 만운저수지의 수질환경특성)

  • Nam, Gui-Sook;Jang, Jeong-Ryeol;Lee, Gwang-Sik;Yoon, Keung-Sup;Lee, Sang-Joon
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.16-25
    • /
    • 2003
  • Manun Reservoir, located in Andong district has the capacity of 2 million tons in irrigation water supply with the drainage area of $23.8\;km^2$. Manun Reservoir is over fifty year old, and shallow in depth. The ratio of drainage area (DA) to reservoir surface area (SA) as an effective physical parameter on water quality was 56.1 and was higher than those of other agricultural reservoirs. The ratio of reservoir storage (ST) to SA in Manun Reservoir was 4.79, and the mean depth was below 8m. Both ratios of DS/SA, total area (TA)/ST and ST/SA in Manun Reservoir were relatively higher than those in other agricultural reservoir and natural lakes in Korea. These physical parameters in Manun Reservoir, however, had a eutropic potential significance. Average of COD, IN, and TP in Manun Reservoir were 11.1 mg/L 1.426 mg/L, 0.093 mg/L, respectively. In the inflow stream of Manun Reservoir, the TN ($1.426{\sim}3.809\;mg/L$) was higher than those in reservoir. Only Lyngbya spp. was dominant in phytoplankton for this study period and Gymnodinium spp., Peridinium spp., and Cryptomonas spp. were dominant in zooplankton. According to the Carlson's trophic status index, Mnnun Reservoir was eutrophic in 1996, 1997, and 1999, and hypertrophic in 1998.

Effective Biodegradation of Polyaromatic Hydrocarbons Through Pretreatment Using $TiO_2$-Coated Bamboo Activated Carbon and UV ($TiO_2$로 코팅된 대나무숯 및 UV의 전처리를 통한 다환방향족탄화수소의 효율적 생분해)

  • Ekpeghere, Kalu I.;Koo, Jin-Heui;Kim, Jong-Hyang;Lee, Byeong-Woo;Yi, Sam-Nyung;Kim, Yun-Hae;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • $TiO_2$-coated bamboo activated carbon has been prepared and utilized under UV irradiation as a pretreatment method for an effective biodegradation of the recalcitrant polyaromatic hydrocarbons (PAHs). The anatase $TiO_2$ was successfully coated on the bamboo activated carbon (AC) and it showed the highest photoactivity against methylene blue. In the absence of the PAHs-degrading bacteria PAHs having low molecular weight (i.e., naphthalene, acenaphthylene, acenaphthene, and fluorene) were degraded by 9.8, 76.2, 74.1, and 40.5%, respectively. Higher molecular weight PAHs, however, maintained high residual concentrations of PAHs (400-1,000 ${\mu}g$/L) after the same treatment. On the other hand, the overall concentrations of PAHs became lower than 340 ${\mu}g$/L when the pretreated PAHs were subjected to biodegradation by a PAH-degrading consortium for a week. Herein, phenanthrene, anthracene, fluoranthene, and pyrene were removed by 29.3, 61.4, 27.0, and 44.3%, respectively, indicating the facilitated potential biodegradation of PAHs. Activated carbon coated with $TiO_2$ appeared to inhibit growth of PAH degraders on the surface of AC, indicating planktonic degraders were dominantly involved in the PAH biodegradation in presence of the $TiO_2$-coated bamboo AC. It was proposed that an effective remediation technology for the recalcitrant PAHs could be developed when an optimum pretreatment process is further established.

Winter Algal Bloom and Spatial Characteristics of Water Quality in the Lower Taewha River, Ulsan, Korea (태화강 하류에서 겨울철 조류 발생과 수질의 공간적 특성)

  • Sohn, Eun Rak;Park, Jung Im;Lee, Bora;Lee, Jin Woo;Kim, Jongseol
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.30-37
    • /
    • 2013
  • This study was carried out to assess the spatial and tidal effects on the water quality in the lower reaches of Taewha River, Ulsan, Korea and to understand the environmental factors affecting winter algal bloom in the river. From May, 2010 to January, 2011, water samples were collected at five locations (New Samho Bridge, Old Samho Bridge, Mungjung Stream, Taewha Bridge, and Mungchon Bridge) along the river at high and low tides of spring tide. We measured environmental parameters including salinity, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), chlorophyll a (Chl a) and various nutrient concentrations. Salinity increased towards the downstream direction. Average values of Chl a concentrations ranged $10-26mg/m^3$ at high tide and $11-53mg/m^3$ at low tide depending on sampling locations. It was noteworthy that there were strong increases in Chl a concentrations during the November 21 to December 22 sampling period especially at the Taewha Bridge. At the location, Chl a concentrations were measured as $138-296mg/m^3$ for the period; Rhodomonas lacustris of class Cryptophyceae was the dominant algal species. Chl a concentrations at the Taewha Bridge were positively correlated with such parameters as salinity, BOD, DO, COD, pH, and T-N, and negatively correlated with temperature and $NO_3{^-}$-N. On the other hand, at the Mungchon Bridge the highest concentration of Chl a was $55mg/m^3$ on August 25, and Chl a concentrations were positively correlated with $NH_3$-N, T-N, $PO_4{^{3-}}$-P, T-P, and heterotrophic plate counts. The results suggested that water quality in the lower Taewha River fluctuated a lot with the sampling locations and the patterns of algal blooms were different between Taewha Bridge and Mungchon Bridge sampling locations.

Study on Low Temperature Tolerant Methane-Producing Bacteria for the Treatment of Agricultural and Livestock Wastes;III. Isolation of Low Temperature Tolerant Methanogens (농축산(農畜産) 폐기물(廢棄物) 처리(處理)를 위(爲)한 저온내성(低溫耐性) 메탄 생성균(生成菌)의 특성(特性)에 관(關)한 연구(硏究);III. 저온내성(低溫耐性) Methanogens의 분리(分離))

  • Kim, Kwang-Yong;Kim, Jai-Joung;Daniels, Lacy
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.362-371
    • /
    • 1996
  • This study was conducted to investigate the biochemical properties of isolated bacteria, low temperature tolerant methanogens which were selected for use as inoculum for anaerobic fermentation of agricultural and livestock wasted at low temperature. The results, obtained were summarized as follows: Low temperature tolerant methanogens were isolated from the samples which showed the high methanogenesis rate by enrichment culture at low temperature in methanol medium. These methanogens, Methanobacterium M-251 and Methanobacterium M-253 were isolated from swampy sediment at latitude $56.9^{\circ}$, Methanosarcina mazei M-372 from lake sediment IV at latitude $55.0^{\circ}$ N, and Methanobacterium formicicum M-375 from tidal land soil at latitude $37.0^{\circ}N$, respectively. The isolated anaerobic bacteria could not use sugars as carbon sources. The optimum pH value for the growth of M-251 and M-375 was 6.8, but those for M-253 and M-372 6.5 and 7.0, respectively. The minimum growth temperature of isolated, M-251 and M-253 were $8^{\circ}C$ and the optimum temperature $30^{\circ}C$, while the minimum of M-392 and M-395 were $13^{\circ}C$ and the optimum $37^{\circ}C$. The growth rate of isolates at $17.5^{\circ}C$ were lower by 32-50% than that of $30^{\circ}C$. The isolated Methanobacterium strains such as M-251, M-253, and M-375 have lower cell yield, 0.38-1.21g/1M $CH_4$ than 1.14-1.51g/1M $CH_4$ of Methanosarcina mazei M-372.

  • PDF

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Bioleaching of Mn(II) from Manganese Nodules by Bacillus sp. MR2 (Bacillus sp. MR2에 의한 망간단괴의 생물용출)

  • Choi, Sung-Chan;Lee, Ga-Hwa;Lee, Hong-Keum
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.411-415
    • /
    • 2009
  • Some microorganisms are capable of leaching Mn(II) from nonsulfidic manganese ores indirectly via nonenzymatic processes. Such reductive dissolution requires organic substrates, such as glucose, sucrose, or galactose, as a source of carbon and energy for microbial growth. This study investigated characteristics of Mn(II) leaching from manganese nodules by using heterotrophic Bacillus sp. strain MR2 provided with corn starch as a less-expensive substrate. Leaching of Mn(II) at 25.6 g Mn(II) $kg^{-1}$ nodule $day^{-1}$ was accompanied with cell growth, but part of the produced Mn(II) re-adsorbed onto residual $MnO_2$ particles after 24 h. Direct contact of cells to manganese nodule was not necessary as a separation between them with a dialysis tube produced similar amount [24.6 g Mn(II) $kg^{-1}$ nodule $day^{-1}$]. These results indicated an involvement of extracellular diffusible compound(s) during Mn(II) leaching by strain MR2. In order to optimize a leaching process we tested factors that influence the reaction, and the most efficient conditions were $25\sim35^{\circ}C$, pH 5~7, inoculum density of 1.5~2.5% (v/v), pulp density of 2~3 g/L, and particle size <75 ${\mu}m$. Although Mn(II) leaching was enhanced as particle size decrease, we suggest <212 ${\mu}m$ as a proper size range since more grinding means more energy consumption The results would help for the improvement of bioleaching of manganese nodule as a less expensive, energy-efficient, and environment-friendly technology as compared to the existing physicochemical metal recovery technologies.

Evaluation of Cryptosporidiurn Disinfection by Ozone and Ultraviolet Irradiation Using Viability and Infectivity Assays (크립토스포리디움의 활성/감염성 판별법을 이용한 오존 및 자외선 소독능 평가)

  • Park Sang-Jung;Cho Min;Yoon Je-Yong;Jun Yong-Sung;Rim Yeon-Taek;Jin Ing-Nyol;Chung Hyen-Mi
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.534-539
    • /
    • 2006
  • In the ozone disinfection unit process of a piston type batch reactor with continuous ozone analysis using a flow injection analysis (FIA) system, the CT values for 1 log inactivation of Cryptosporidium parvum by viability assays of DAPI/PI and excystation were $1.8{\sim}2.2\;mg/L{\cdot}min$ at $25^{\circ}C$ and $9.1mg/L{\cdot}min$ at $5^{\circ}C$, respectively. At the low temperature, ozone requirement rises $4{\sim}5$ times higher in order to achieve the same level of disinfection at room temperature. In a 40 L scale pilot plant with continuous flow and constant 5 minutes retention time, disinfection effects were evaluated using excystation, DAPI/PI, and cell infection method at the same time. About 0.2 log inactivation of Cryptosporidium by DAPI/PI and excystation assay, and 1.2 log inactivation by cell infectivity assay were estimated, respectively, at the CT value of about $8mg/L{\cdot}min$. The difference between DAPI/PI and excystation assay was not significant in evaluating CT values of Cryptosporidium by ozone in both experiment of the piston and the pilot reactors. However, there was significant difference between viability assay based on the intact cell wall structure and function and infectivity assay based on the developing oocysts to sporozoites and merozoites in the pilot study. The stage of development should be more sensitive to ozone oxidation than cell wall intactness of oocysts. The difference of CT values estimated by viability assay between two studies may partly come from underestimation of the residual ozone concentration due to the manual monitoring in the pilot study, or the difference of the reactor scale (50 mL vs 40 L) and types (batch vs continuous). Adequate If value to disinfect 1 and 2 log scale of Cryptosporidium in UV irradiation process was 25 $mWs/cm^2$ and 50 $mWs/cm^2$, respectively, at $25^{\circ}C$ by DAPI/PI. At $5^{\circ}C$, 40 $mWs/cm^2$ was required for disinfecting 1 log Cryptosporidium, and 80 $mWs/cm^2$ for disinfecting 2 log Cryptosporidium. It was thought that about 60% increase of If value requirement to compensate for the $20^{\circ}C$ decrease in temperature was due to the low voltage low output lamp letting weaker UV rays occur at lower temperatures.

Isolation and Identiffication of Acinetobacter koreensis sp. nov. from Jang-Baek Waterfall (장백 폭포에서 분리한 Acinetobacter koreensis sp. nov.의 보고)

  • Lee, Ha-Yan;Yoo, Yong-Kyu;Seo, Pil-Soo;Lee, Jung-Sook;Lee, Keun-Chul;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.66-71
    • /
    • 2007
  • Two isolates of genus Acinetobacter were obtained from Jang-Baek waterfall in North Korea. Morphological characteristics of the isolated 2 strains were Gram-negative, aerobic and rod shape bacteria. Physiological and biochemical characterization of the isolated 2 strains were some different aspect from those of type strains. 16S rDNA sequence analysis showed that the two isolates shared 99.9% sequence similarity. Strains JB10 and $JB15^{T}$ were shown to belong to the Gammaproteobacteria and showed the highest levels of sequence similarity to Acinetobacter tandoii $4N13^{T}$ (97.3%), Acinetobacter haemolyticus $ATCC17906^{T}$ (97.2%), Acinetobacter johnsonii $DSM6963^{T}$ (97.2%), Acinetobacter junii $DSM6964^{T}$ (96.7%), Acinetobacter schindleri $LUH5832^{T}$ (97.0%) and Acinetobacter ursingii $LUH3792^{T}$ (96.6%). The major cellular fatty acid in Acinetobacter type strains and isolated strains included $C_{18:1}\;{\omega}9c\;and\;C_{16:1}\;{\omega}7c/C_{15:0}\;iso\;2OH$. Eventhough it was ascertained that the isolated strains were closely related to genus Acinetobacter, physiological and biochemical characteristics and the result of the isolated strains 16S rDNA analysis indicate some different aspects from those of type strains of genus Acinetohacter It is considered that the isolated JB10 (=KEMC 52-093) and $JB15^{T}\;(=KEMC\;52-094^{T})$ strains be new species of genus Acinetobacter. We name it as Acinetobacter koreensis sp. nov.

Heat Shock-Induced Physical Changes of Megaplasmids in Rhodococcus sp. Strain DK17 (성장 온도가 Rhodococcus sp. Strain DK17의 Megaplasmid 안정성에 미치는 영향)

  • Kim, Kyung-Sun;Kim, Doc-Kyu;Park, Hae-Youn;Sung, Jung-Hee;Kim, Eung-Bin
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.92-96
    • /
    • 2011
  • Rhodococcus sp. strain DK17 possesses three megaplasmids (380 kb pDK1, 330 kb pDK2, and 750 kb pDK3). The alkylbenzene-degrading genes (akbABCDEF) are present on pDK2 while the phthalate operons which are duplicated are present on both pDK2 (ophA'B'C'R') and pDK3 (ophABCR). DK17 with an optimal temperature of $30^{\circ}C$ showed no growth at $37^{\circ}C$. When transferred to $30^{\circ}C$, however, the $37^{\circ}C$ culture began to grow immediately, indicating that $37^{\circ}C$ is not lethal but stressful for DK17 growth. In addition, when exposed to $37^{\circ}C$ even for a short time, a part of DK17 cells lost the ability to degrade o-xylene (a model compound of alkylbenzenes). When two hundred colonies were randomly selected for colony PCR for pDK2-specific akbC, ophC', or pDK3-specific ophC, a total of 29 colonies were found to have lost at least one of the three genes. PFGE analysis clearly showed that all the mutants have different megaplasmid profiles from that of DK17 wild type, which are divided into five different cases: Type I (10 mutants, pDK2 loss and acquisition of a new ~700 kb plasmid), Type II (9 mutants, pDK2 loss), Type III (8 mutants, pDK3 loss and acquisition of a new ~400 kb plasmid), Type IV (1 mutant, pDK3 loss), and Type V (1 mutant, pDK2 and pDK3 loss and acquisition of the ~400 kb and ~700 kb plasmids). The above results showing that growth temperature changes can induce physical changes in bacterial genomes suggest that environmental changes in habitats including temperature fluctuations affect significantly the evolution of bacteria.