Bioleaching of Mn(II) from Manganese Nodules by Bacillus sp. MR2

Bacillus sp. MR2에 의한 망간단괴의 생물용출

  • Choi, Sung-Chan (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Lee, Ga-Hwa (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Lee, Hong-Keum (Polar Biocenter, Korea Polar Research Institute, KORDI)
  • 최성찬 (한림대학교 환경생명공학과) ;
  • 이가화 (한림대학교 환경생명공학과) ;
  • 이홍금 (한국해양연구원 부설 극지연구소)
  • Received : 2009.09.26
  • Accepted : 2009.12.02
  • Published : 2009.12.31

Abstract

Some microorganisms are capable of leaching Mn(II) from nonsulfidic manganese ores indirectly via nonenzymatic processes. Such reductive dissolution requires organic substrates, such as glucose, sucrose, or galactose, as a source of carbon and energy for microbial growth. This study investigated characteristics of Mn(II) leaching from manganese nodules by using heterotrophic Bacillus sp. strain MR2 provided with corn starch as a less-expensive substrate. Leaching of Mn(II) at 25.6 g Mn(II) $kg^{-1}$ nodule $day^{-1}$ was accompanied with cell growth, but part of the produced Mn(II) re-adsorbed onto residual $MnO_2$ particles after 24 h. Direct contact of cells to manganese nodule was not necessary as a separation between them with a dialysis tube produced similar amount [24.6 g Mn(II) $kg^{-1}$ nodule $day^{-1}$]. These results indicated an involvement of extracellular diffusible compound(s) during Mn(II) leaching by strain MR2. In order to optimize a leaching process we tested factors that influence the reaction, and the most efficient conditions were $25\sim35^{\circ}C$, pH 5~7, inoculum density of 1.5~2.5% (v/v), pulp density of 2~3 g/L, and particle size <75 ${\mu}m$. Although Mn(II) leaching was enhanced as particle size decrease, we suggest <212 ${\mu}m$ as a proper size range since more grinding means more energy consumption The results would help for the improvement of bioleaching of manganese nodule as a less expensive, energy-efficient, and environment-friendly technology as compared to the existing physicochemical metal recovery technologies.

비황화광물인 망간단괴에서 일부 미생물은 비효소학적 과정을 통해 간접적으로 망간(II)을 용출시킬 수 있다. 이때 환원적 용해를 일으킬 수 있는 대사산물의 생성을 위해 제공되는 탄소 및 에너지원인 glucose, sucrose, galactose 등은 생물용출 기술의 장점인 경제성을 저하시키는 원인이 되고 있다. 본 연구에서는 저렴한 탄소 및 에너지원으로 corn starch를 이용하면서 망간(II) 용출능력을 지닌 종속영양 미생물로서 Bacillus sp. MR2에 의한 망간(II)의 용출 특성을 알아보았다. 망간(II)의 용출은 MR2의 생장에 수반되어 일어났으며[25.6 g Mn(II) $kg^{-1}$ nodule $day^{-1}$], 24시간 이후에는 생성된 망간(II)의 일부가 망간단괴 입자에 다시 흡착되는 경향을 보였다. 분쇄물을 dialysis tube (MWCO 12,000)에 넣어 MR2와의 접촉을 막았을 때도 유사한 정도의 결과[24.6 g Mn(II) $kg^{-1}$ nodule $day^{-1}$]를 보여 세포와 망간단괴의 직접적 접촉이 필요 없이 세포외 분비물질에 의해 환원적 용해가 일어남을 알 수 있었다. 실험에 적용된 영향요인들의 범위에서 최적 용출조건을 분석한 결과, $25\sim35^{\circ}C$, pH 5~7, 접종밀도 1.5~2.5% (v/v), 분쇄물의 농도 2~3 g/L 및 입자크기 <75 ${\mu}m$일 때가 가장 효율이 높았다. 비록 입자의 크기가 작을수록 망간(II) 용출속도가 증가했지만 분쇄에 더 많은 에너지가 요구되므로 경제성을 고려한다면 <212 ${\mu}m$가적절한 수준으로 제시될 수 있었다. 이상의 효율적인 망간단괴의 용출 조건 규명은 기존의 물리화학적 금속 회수기술에 비해 적은 비용과 에너지가 요구되는 환경친화적 생물용출 기술의 진보에 도움을 줄 것으로 기대된다.

Keywords

References

  1. Acharya, C., R.N. Kar, and L.B. Sukla. 2003. Studies on reaction mechanism of bioleaching of manganese ore. Miner. Engineer. 16, 1027-1030 https://doi.org/10.1016/S0892-6875(03)00239-5
  2. Bosecker, K. 1997. Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev. 20, 591-604 https://doi.org/10.1111/j.1574-6976.1997.tb00340.x
  3. Brandl, H. 2001. Microbial leaching from metals, pp. 191-224. In H.J. Rehm (ed.), Biotechnology, 2nd ed. Wiley-VCH, Germany
  4. Brewer, P.G. 1971. Colorimetric determination of manganese in anoxic waters. Limnol. Oceanogr. 16, 107-110 https://doi.org/10.4319/lo.1971.16.1.0107
  5. Burgstaller, W., H. Strasser, H. Wobking, and F. Schinner. 1992. Solubilization of zinc oxide from filter dust with Penicillium simplicissimum: bioreactor leaching and stoichiometry. Environ. Sci. Technol. 26, 340-346 https://doi.org/10.1021/es00026a015
  6. Cheng, Z., G. Zhu, and Y. Zhao. 2009. Study in reduction-roast leaching manganese from low-grade manganese dioxide ores using cornstalk as reductant. Hydrometallurgy 96, 176-179 https://doi.org/10.1016/j.hydromet.2008.08.004
  7. Ehrlich, H.L. 2000. Ocean manganese nodules: biogenesis and bioleaching possibilities. Miner. Metallur. Process 17, 121-128
  8. Gadd, G.M. 1999. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 41, 47-92 https://doi.org/10.1016/S0065-2911(08)60165-4
  9. Jain, N. and D.K. Sharma. 2004. Biohydrometallurgy for nonsulfidic minerals-a review. Geomicrobiol. J. 21, 135-144 https://doi.org/10.1080/01490450490275271
  10. Lee, E.Y., S.R. Noh, K.S. Cho, and H.W. Ryu. 2001. Leaching of Mn, Co, and Ni from manganese nodules using an anaerobic bioleaching method. J. Biosci. Bioeng. 92, 354-359 https://doi.org/10.1263/jbb.92.354
  11. Lovley, D.R. and E.J.P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron and manganese. Appl. Environ. Microbiol. 54, 1472-1480
  12. Myers, J.M. and C.R. Myers. 2001. Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 67, 260-269 https://doi.org/10.1128/AEM.67.1.260-269.2001
  13. Nakazawa, H. and H. Sato. 1995. Bacterial leaching of cobalt-rich ferromanganese crusts. Int. J. Miner. Process 43, 255-265 https://doi.org/10.1016/0301-7516(95)00005-X
  14. Pak, K.R., O.Y. Lim, H.K. Lee, and S.C. Choi. 2002. Aerobic reduction of manganese oxide by Salmonella sp. strain MR4. Biotechnol. Lett. 24, 1181-1184 https://doi.org/10.1023/A:1016139213986
  15. Roden, E.E. and D.R. Lovley. 1993. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl. Environ. Microbiol. 59, 734-742
  16. Vasan, S.S., J.M. Modak, and K.A. Natarajan. 2001. Some recent advances in the bioprocessing of bauxite. Int. J. Miner. Process 62, 173-186 https://doi.org/10.1016/S0301-7516(00)00051-X
  17. Veglio, F., F. Beolchini, A. Gasbarro, L. Toro, S. Ubaldini, and C. Abbruzzese. 1997. Batch and semi-continuous tests in the bioleaching of manganiferous minerals by heterotrophic mixed microorganisms. Int. J. Miner. Process 50, 255-273 https://doi.org/10.1016/S0301-7516(97)00044-6
  18. Welch, S.A., W.W. Barker, and W.W. Banfield. 1999. Microbial extracellular polysaccharides and plagioclase dissolution. Geochim. Cosmochim. Acta 63, 1405-1419 https://doi.org/10.1016/S0016-7037(99)00031-9
  19. Xia, L., S. Dai, C. Yin, Y. Hu, J. Liu, and G. Qiu. 2009. Comparison of bioleaching behaviors of different compositional sphalerite using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus. J. Ind. Microbiol. Biotechnol. 36, 845-851 https://doi.org/10.1007/s10295-009-0560-9
  20. Xu, D.B., C.P. Madrid, M. Roehr, and C.P. Kubicek. 1989. The influence of type and concentration of the carbon source on the production of citric acid by Aspergillus niger. Appl. Microbiol. Biotechnol. 30, 553-559 https://doi.org/10.1007/BF00255358