Browse > Article

Heat Shock-Induced Physical Changes of Megaplasmids in Rhodococcus sp. Strain DK17  

Kim, Kyung-Sun (Department of Biology, Yonsei University)
Kim, Doc-Kyu (Division of Life Sciences, Korea Polar Research Institute)
Park, Hae-Youn (Department of Biology, Yonsei University)
Sung, Jung-Hee (Department of Biology, Yonsei University)
Kim, Eung-Bin (Department of Biology, Yonsei University)
Publication Information
Korean Journal of Microbiology / v.47, no.1, 2011 , pp. 92-96 More about this Journal
Abstract
Rhodococcus sp. strain DK17 possesses three megaplasmids (380 kb pDK1, 330 kb pDK2, and 750 kb pDK3). The alkylbenzene-degrading genes (akbABCDEF) are present on pDK2 while the phthalate operons which are duplicated are present on both pDK2 (ophA'B'C'R') and pDK3 (ophABCR). DK17 with an optimal temperature of $30^{\circ}C$ showed no growth at $37^{\circ}C$. When transferred to $30^{\circ}C$, however, the $37^{\circ}C$ culture began to grow immediately, indicating that $37^{\circ}C$ is not lethal but stressful for DK17 growth. In addition, when exposed to $37^{\circ}C$ even for a short time, a part of DK17 cells lost the ability to degrade o-xylene (a model compound of alkylbenzenes). When two hundred colonies were randomly selected for colony PCR for pDK2-specific akbC, ophC', or pDK3-specific ophC, a total of 29 colonies were found to have lost at least one of the three genes. PFGE analysis clearly showed that all the mutants have different megaplasmid profiles from that of DK17 wild type, which are divided into five different cases: Type I (10 mutants, pDK2 loss and acquisition of a new ~700 kb plasmid), Type II (9 mutants, pDK2 loss), Type III (8 mutants, pDK3 loss and acquisition of a new ~400 kb plasmid), Type IV (1 mutant, pDK3 loss), and Type V (1 mutant, pDK2 and pDK3 loss and acquisition of the ~400 kb and ~700 kb plasmids). The above results showing that growth temperature changes can induce physical changes in bacterial genomes suggest that environmental changes in habitats including temperature fluctuations affect significantly the evolution of bacteria.
Keywords
Rhodococcus; heat-shock; megaplasmid; PFGE;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Baitsch, D., C. Sandu, R. Brandsch, and G.L. Igloi. 2001. Gene cluster on pAO1 of Arthrobacter nicotinovorans involved in degradation of the plant alkaloid nicotine: cloning, purification, and characterization of 2,6-dihydroxypyridine 3-hydroxylase. J. Bacteriol. 183, 5262-5267.   DOI   ScienceOn
2 Banfalvi, Z., E. Kondorosi, and A. Kondorosi. 1985. Rhizobium meliloti carries two megaplasmids. Plasmid 13, 129-138.   DOI   ScienceOn
3 Barton, B.M., G.P. Harding, and A.J. Zuccarelli. 1995. A general method for detecting and sizing large plasmids. Anal. Biochem. 226, 235-240.   DOI   ScienceOn
4 Basta, T., A. Keck, J. Klein, and A. Stolz. 2004. Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains. J. Bacteriol. 186, 3862-3872.   DOI   ScienceOn
5 Broker, D., M. Arenskotter, A. Legatzki, D.H. Nies, and A. Steinbuchel. 2004. Characterization of the 101-kilobase-pair megaplasmid pKB1, isolated from the rubber-degrading bacterium Gordonia westfalica Kb1. J. Bacteriol. 186, 212-225.   DOI   ScienceOn
6 Choi, K.Y., D. Kim, J.C. Chae, G.J. Zylstra, and E. Kim. 2007. Requirement of duplicated operons for maximal metabolism of phthalate by Rhodococcus sp. strain DK17. Biochem. Biophys. Res. Commun. 357, 766-771.   DOI   ScienceOn
7 Choi, K.Y., D. Kim, W.J. Sul, J.C. Chae, G.J. Zylstra, Y.M. Kim, and E. Kim. 2005. Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17. FEMS Microbiol. Lett. 252, 207-213.   DOI   ScienceOn
8 Danko, A.S., M. Luo, C.E. Bagwell, R.L. Brigmon, and D.L. Freedman. 2004. Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Appl. Environ. Microbiol. 70, 6092-6097.   DOI   ScienceOn
9 Dib, J.R., M. Wagenknecht, R.T. Hill, M.E. Farias, and F. Meinhardt. 2010. Novel linear megaplasmid from Brevibacterium sp. isolated from extreme environment. J. Basic Microbiol. 50, 280-284.   DOI   ScienceOn
10 Hiraga, S. 2000. Dynamic localization of bacterial and plasmid chromosomes. Annu. Rev. Genet. 34, 21-59.   DOI   ScienceOn
11 Hogrefe, C. and B. Friedrich. 1984. Isolation and characterization of megaplasmid DNA from lithoautotrophic bacteria. Plasmid 12, 161-169.   DOI   ScienceOn
12 Igloi, G.L. and R. Brandsch. 2003. Sequence of the 165-kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1-dependent nicotine uptake system. J. Bacteriol. 185, 1976-1986.   DOI   ScienceOn
13 Indest, K.J., C.M. Jung, H. Chen, D. Hancock, C. Florizone, L.D. Eltis, and F.H. Crocker. 2010. Functional characterization of pGKT2, a 182-kilobase plasmid containing the xplAB genes, which are involved in the degradation of hexahydro-1,3,5- trinitro-1,3,5-triazine by Gordonia sp. strain KTR9. Appl. Environ. Microbiol. 76, 6329-6337.   DOI   ScienceOn
14 Jakimowicz, D., K. Chater, and J. Zakrzewska-Czerwinska. 2002. The ParB protein of Streptomyces coelicolor A3(2) recognizes a cluster of parS sequences within the origin-proximal region of the linear chromosome. Mol. Microbiol. 45, 1365-1377.   DOI   ScienceOn
15 Keck, A., D. Conradt, A. Mahler, A. Stolz, R. Mattes, and J. Klein. 2006. Identification and functional analysis of the genes for naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6. Microbiology 152, 1929-1940.   DOI   ScienceOn
16 McLeod, M.P., R.L. Warren, W.W. Hsiao, N. Araki, M. Myhre, C. Fernandes, D. Miyazawa, W. Wong, A.L. Lillquist, D. Wang, and et al. 2006. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci. USA 103, 15582-15587.   DOI   ScienceOn
17 Kim, D., Y.S. Kim, S.K. Kim, S.W. Kim, G.J. Zylstra, Y.M. Kim, and E. Kim. 2002. Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Appl. Environ. Microbiol. 68, 3270-3278.   DOI   ScienceOn
18 Kim, D., S. Shin, K.Y. Choi, and E. Kim. 2008. Temperatureinduced loss of linear catabolic megaplasmid (pDK2) in Rhodococcus sp. strain DK17, Abstr. B-031, p. 145. Abstr. 2008 Int. Meet. Kor. Microbiol. Soc.
19 Konig, C., D. Eulberg, J. Groning, S. Lakner, V. Seibert, S.R. Kaschabek, and M. Schlömann. 2004. A linear megaplasmid, p1CP, carrying the genes for chlorocatechol catabolism of Rhodococcus opacus 1CP. Microbiology 150, 3075-3087.   DOI   ScienceOn
20 Mongodin, E.F., N. Shapir, S.C. Daugherty, R.T. Deboy, J.B. Emerson, A. Shvartzbeyn, D. Radune, J. Vamathevan, F. Riggs, V. Grinberg, and et al. 2006. Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet. 2, 2094-2106.
21 Pang, X., Y. Sun, J. Liu, X. Zhou, and Z. Deng. 2002. A linear plasmid temperature-sensitive for replication in Streptomyces hygroscopicus 10-22. FEMS Microbiol. Lett. 208, 25-28.   DOI   ScienceOn
22 Rosenberg, C., P. Boistard, J. Denarie, and F. Casse-Delbart. 1981. Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol. Gen. Genet. 184, 326-333.
23 Saeki, H., M. Akira, K. Furuhashi, B. Averhoffl, and G. Gottschalkl. 1999. Degradation of trichloroethene by a linearplasmidencoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276. Microbiology 145, 1721-1730.   DOI   ScienceOn
24 Shimizu, S., H. Kobayashi, E. Masai, and M. Fukuda. 2001. Characterization of the 450-kb linear plasmid in a polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 67, 2021-2028.   DOI   ScienceOn
25 Stanier, R.Y., N.J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43, 159-271.   DOI   ScienceOn
26 Stecker, C., A. Johann, C. Herzberg, B. Averhoff, and G. Gottschalk. 2003. Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J. Bacteriol. 185, 5269-5274.   DOI   ScienceOn