• Title/Summary/Keyword: environmental isotope

Search Result 444, Processing Time 0.029 seconds

Seasonal Variation of Nitrogen Loads and Nitrogen Cycling at Tidal Flat Sediments in Nakdong River Estuary (낙동강 하구 갯벌 퇴적물에서 강을 통한 질산염 유입에 따른 질소순환의 계절 변화)

  • Lee, Ji-Young;Kwon, Ji-Nam;An, Soon-Mo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.120-129
    • /
    • 2012
  • We investigated seasonal variation of sediment-water oxygen and inorganic nitrogen fluxes, and denitrification at tidal flat sediments located in the Nakdong River Estuary from July 2005 to September 2006. Net oxygen fluxes, measured with sediment incubations at in situ temperature, varied from -37.0 to $0.5mmol\;O_2\;m^{-2}\;d^{-1}$. Oxygen fluxes into the sediments from the overlying water increased due to the increased water temperature. Denitrification rate ($4{\sim}2732{\mu}mol\;N\;m^{-2}\;d^{-1}$) in this study was higher compared to the other Korean coast measured with the same method. Denitrification showed the same seasonal variation as oxygen fluxes. Denitrification rate based on $^{15}N$-nitrate showed a strong correlation with nitrate flux into the sediments from the overlying water. Denitrification via "water column supplied nitrate ($D_w$)", calculated from Isotope pairing technique, also correlated well with nitrate flux into the sediments. Nitrate from water column seems to account for seasonal variation of denitrification in Nakdong River Estuary. To understand general patterns and trends of biogeochemical processes of sediments in the Nakdong River Estuary, we categorized biogeochemical fluxes measured in this study according to direction and sizes of fluxes. Type 1(high oxygen and inorganic nitrogen fluxes into the sediments and high denitrification) occurred in summer, whereas Type 2(low oxygen and inorganic nitrogen fluxes into the sediments and low denitrification) occurred in rest of the season. Intertidal flat sediments seem to react sensitively to influence of freshwater from the Nakdong River.

Measurement of heavy metals in antarctic soil at the king sejong station: application of isotope dilution inductively coupled plasma mass spectrometry (동위원소희석 ICP-MS분석법에 의한 남극 세종기지 주변 토양의 중금속 측정)

  • Suh, Jung-Ki;Hwang, Euijin;Min, Hyung Sik
    • Analytical Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.364-374
    • /
    • 2008
  • Antarctic Environmental Monitoring Handbook' was published by COMNAP/SCAR in 2000. The standardized method described in this handbook is recommended for monitoring of antarctic environment. High pressure bomb technique in this guide was used to decompose soil samples. In compliance with this guide book, high pressure bomb technique was applied to decompose the antarctic soil sampled at the King Sejong Station. An Isotope Dilution-Inductively Coupled Plasma-Mass Spectrometry (ID-ICP-MS) was applied to determine mass concentrations of Pb, Cu and Zn in the soil. The accuracy in this method was verified by the analysis of certified reference materials (CRM) of NIST 2702 (marine sediment). The analytical results agreed with certified value within the range from 99.5~100.8%. Matrix separation was necessitated for the determination of Cu and Zn by Chelex 100 ion exchange resin. As a result, the average mass concentrations of Pb, Cu and Zn which are suspected to be caused by anthropogenic pollution were 332.9 mg/kg, 95.6 mg/kg and 115.3 mg/kg, respectively. Those for the metals sampled in the soils of the remote regions from the station were 28.1 mg/kg, 101.8 mg/kg and 115.6 mg/kg, respectively.

High Remineralization and Denitrification Activity in the Shelf Sediments of Dok Island, East Sea (동해 독도 사면 퇴적물의 높은 재광물화와 탈질소화)

  • Jeong, Jin-Hyun;Kim, Dong-Seon;Lee, Tae-Hee;An, Soon-Mo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.2
    • /
    • pp.80-89
    • /
    • 2009
  • The rates of sediment oxygen demand(SOD) and denitrification(DNF) were measured using $^{15}N$ isotope pairing technique in intact sediment cores in the shelf of Dok Island. The SOD and DNF in the continental shelf of Dok Island were ranged from 1.04 to $9.08\;mmol\;m^{-2}\;d^{-1}$ and from 7.06 to $37.67\;{\mu}mol\;m^{-2}\;d^{-1}$, respectively. The SOD and DNF values in this study are higher than typical deep sea sediment. The SOD and DNF in this study were high in the high organic matter content sediment and high organic matter content was promotive of coupled nitrification-denitrification. Organic carbon contents in surface sediment ranged from 1.8 to 2.4%, which is higher than typical deep sea sediments. Therefore we conclude that the organic matter content in surface sediment is determined by the nature of the export production not the water depth in East sea sediment and the nature of the export production also determines remineralization processes such as SOD and DNF in East sea/Ulleung Basin sediment.

Polychlorobiphenyl (PCB) 토양오염복원: PCB 제거 토양미생물들의 군집과 기능을 효과적으로 분석하는 신 genomics 방법개발에 관한 연구

  • Park Jun-Hong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.28-30
    • /
    • 2005
  • Because of high population diversity in soil microbial communities, it is difficult to accurately assess the capability of biodegradation of toxicant by microbes in soil and sediment. Identifying biodegradative microorganisms is an important step in designing and analyzing soil bioremediation. To remove non-important noise information, it is necessary to selectively enrich genomes of biodegradative microorganisms fromnon-biodegradative populations. For this purpose, a stable isotope probing (SIP) technique was applied in selectively harvesting the genomes of biphenyl-utilizing bacteria from soil microbial communities. Since many biphenyl-using microorganisms are responsible for aerobic PCB degradation In soil and sediments, biphenyl-utilizing bacteria were chosen as the target organisms. In soil microcosms, 13C-biphenyl was added as a selective carbon source for biphenyl users, According to $13C-CO_2$ analysis by GC-MS, 13C-biphenyl mineralization was detected after a 7-day of incubation. The heavy portion of DNA(13C-DNA) was separated from the light portion of DNA (12C-DNA) using equilibrium density gradient ultracentrifuge. Bacterial community structure in the 13C-DNAsample was analyzed by t-RFLP (terminal restriction fragment length polymorphism) method. The t-RFLP result demonstates that the use of SIP efficiently and selectively enriched the genomes of biphenyl degrading bacteria from non-degradative microbes. Furthermore, the bacterial diversity of biphenyl degrading populations was small enough for environmental genomes tools (metagenomics and DNA microarrays) to be used to detect functional (biphenyl degradation) genes from soil microbial communities, which may provide a significant progress in assessing microbial capability of PCB bioremediation in soil and groundwater.

  • PDF

Geochemical and Environmental Isotope Study on the Groundwater from the Youngcheon Area, Gyeongbuk Province (경북 영천지역 지하수의 지구화학 및 환경동위원소 연구)

  • Kim, Geon-Young;Koh, Yong-Kwon;Bae, Dae-Seok;Won, Chong-Ho;Jung, Do-Hwan;Choi, Byoung-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.35-53
    • /
    • 2007
  • Geochemical and isotope studies on the groundwater system of the Youngcheon area were carried out. Most groundwaters belong to Ca-$HCO_3$ and Ca-$SO_4$ types and some groundwaters belong to Na-$HCO_3$ type. Geochemical characteristics of these groundwaters were mainly affected by their basement rocks around the boreholes. High $SO_4$ content of groundwater is the result of reaction with sulfate or sulfide minerals in the host rock. Ca was originated from the carbonate minerals in the sedimentary rock. After the groundwater was saturated with calcite, the Na-$HCO_3$ type groundwaters were evolved by the reaction with plagioclase for a relatively long residence time. This explanation was supported by low tritium contents of Na-$HCO_3$ type groundwaters. ${\delt}a^{18}O$ and ${\delta}D$ data indicate that the groundwaters are of meteoric water origin and there was no difference between the various types of waters. Grondwaters from the boreholes BH-1, BH-9 and BH-12 showed the geochemical and isotopic characteristics of deep groundwater. Most borehole groundwaters except them did not show the systematic geochemical variations with sampling depth indicating that the shallow and deep groundwaters were mixed with each other throughout the study area. The results of water quality analysis indicate that the study area is highly contaminated by the introduction of agricultural sewage.

Application of Stable Isotopes in Studies of Gas Exchange Processes Between Biosphere and the Atmosphere (생태계와 대기 간의 가스 교환 메카니즘 규명을 위한 안정동위원소의 응용)

  • Han, Gwang-Hyun;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.242-251
    • /
    • 2010
  • In comparison with other terrestrial ecosystems, rice paddies are unique because they provide the primary food source for over 50% of the world's population, and act as major sources of global methane. The present paper summerizes a long-term field study that combine carbon isotopes, and canopy-scale flux measurements in an irrigated rice paddy, in conjugation with continuous monitoring of environmental, and vegetational factors. Both $CO_2$, and methane fluxes were largely influenced by soil temperature, and moisture conditions, especially across drainage events. Soil-entrapped $CO_2$, and methane showed a gradually increasing trend throughout growing season, but rapidly decreased upon flood water drainage. These variations in flux were well correlated with changes in concentration, and isotope ratio of soil $CO_2$, and methane, and of atmospheric $CO_2$, and methane within, and above the canopy. The isotopic signature of the gas exchange process varied markedly in response to change in contribution of soil respiration, belowground storage, fraction of $CO_2$ recycled, magnitude, and direction of $CO_2$ exchange, transport mechanism, and fraction of methane oxidized. Our results clearly demonstrate that stable isotope analysis can be a useful tool to study underlying mechanisms of gas exchange processes under natural conditions.

Environment isotope aided studies on river water and ground water interaction in the Han River basin (동위원소를 이용한 한강유역의 지하수와 지표수의 연관성에 관한 연구)

  • 안종성;김재성
    • Water for future
    • /
    • v.16 no.4
    • /
    • pp.245-252
    • /
    • 1983
  • Recently river water pollution in Korea is given rise to serious problem in aspect of crop production, drinking well, water contamination and etc. Under these urgent situations, it is prime importance to protect water resources from pollutants. An environmental isotope survey of the groundwater form the shallow alluvial and the underlying crystalline rock aquifer of the Han River Basin has been undertaken, Analysis of the data has I) confirmed the hypothesis that the groundwater from the metropolitan area is recharged from the river whereas that form the non-urbanized region of the Basin is replenished by the infiltrating precipitation; ii) shown that crystalline rock aquifers are recharged by the ground water form the overlying alluvium. Old groundwater is a group of wells with tritium values in the range of 0 to 2 TU. These low values indicate that the water sampled was recharged much ealier, at least a few decades, than the other groundwater samples of higher tritium content. The low values in this region may, in fact, reflect the effect of the impermeable clay layers which impede infilteration from the surface. Stable isotope evidence confirmed that a recharge in the karst area occurs at a significantly greater elevation than that to the alluvial aquifer. An analysis of the tritium level collected over an annual cycle suggests that the residence time of groundwater is probably not more than a few months. There does not appear to be any correlation between the trace level of Zn, Mn and Pb in the groundwater and the mechanism of the recharge.

  • PDF

Nitrogen Isotope Compositions of Synthetic Fertilizer, Raw Livestock Manure Slurry, and Composted Livestock Manure (화학비료, 가축분뇨 및 퇴비의 질소동위원소비)

  • Lim, Sang-Sun;Lee, Sang-Mo;Lee, Seung-Heon;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.453-457
    • /
    • 2010
  • To investigate the difference in N isotope ratio ($^{15}N/^{14}N$, expressed as ${\delta}^{15}N$) among N sources (synthetic fertilizer, livestock manure, and manure compost), eight synthetic fertilizer, four livestock manure, and thirty-seven compost samples were collected and analyzed for ${\delta}^{15}N$. The mean ${\delta}^{15}N$ values of N sources were $-1.5{\pm}0.5$‰ (range: -3.9 to +0.5‰) for synthetic fertilizer, $+6.3{\pm}0.4$‰ (+5.3 to +7.2‰) for manure, and $+16.0{\pm}0.4$‰ (+9.3 to +20.9‰) for compost. The lower ${\delta}^{15}N$ of synthetic fertilizer was attributed to its N source, atmospheric $N_2$ of which ${\delta}^{15}N$ is 0‰ Meanwhile, more $^{15}N$-enrichment of compost than manure was assumed to be resulted from N isotopic fractionation (faster loss of $^{14}N$-bearing compound than $^{15}N$) associated with N loss particularly via $NH_3$ volatilization during composting. Therefore, our study shows that ${\delta}^{15}N$ values could successfully serve in discriminating two major N sources (synthetic fertilizer and compost) in agricultural system.

Stable Carbon and Nitrogen Isotopes of Sinking Particles in the Eastern Bransfield Strait (Antarctica)

  • Khim, Boo-Keun;Kim, Dong-Seon;Shin, Hyoung-Chul;Kim, Dong-Yup
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.167-176
    • /
    • 2005
  • A time-series sediment trap was deployed at 1,034 m water depth in the eastern Bransfield Strait for a complete year from December 25, 1998 to December 24, 1999. About 99% of total mass flux was trapped during an austral summer, showing distinct seasonal variation. Biogenic particles (biogenic opal, particulate organic carbon, and calcium carbonate) account for about two thirds of annual total mass flux $(49.2\;g\;m^{-2})$, among which biogenic opal flux is the most dominant (42% of the total flux). A positive relationship (except January) between biogenic opal and total organic carbon fluxes suggests that these two variables were coupled, due to the surface-water production (mainly diatoms). The relatively low $\delta^{13}C$ values of settling particles result from effects on C-fixation processes at low temperature and the high $CO_2$ availability to phytoplankton. The correspondingly low $\delta^{l5}N$ values are due to intense and steady input of nitrates into surface waters, reflecting an unlikely nitrate isotope fractionation by degree of surface-water production. The $\delta^{l5}N$ and $\delta^{l3}C$ values of sinking particles increased from the beginning to the end of a presumed phytoplankton bloom, except for anomalous $\delta^{l5}N$ values. Krill and the zooplankton fecal pellets, the most important carriers of sinking particles, may have contributed gradually to the increasing $\delta^{l3}C$ values towards the unproductive period through the biomodification of the $\delta^{l3}C$ values in the food web, respiring preferentially and selectively $^{12}C$ atoms. Correspondingly, the increasing $\delta^{l5}N$ values in the intermediate-water trap are likely associated with a switch in source from diatom aggregates to some remains of zooplankton, because organic matter dominated by diatom may be more liable and prone to remineralization, leading to greater isotopic alteration. In particular, the tendency for abnormally high $\delta^{l5}N$ values in February seems to be enigmatic. A specific species dominancy during the production may be suggested as a possible and speculative reason.

Environmental Isotope-Aided Studies on River Water and Ground Water Interaction in the Region of Seoul Part I: Isotope Hydrology of the Shallow Alluvial Aquifer Han R. Valley (동위원소를 이용한 서울 지역의 강수와 지하수와의 상호연관성에 관한 연구 제 1 보 : 동위원소를 이용한 한강류역 충적대수층 지하수의 수문학적 연구)

  • Jong Sung Ahn;Jae Sung Kim;You Sun Kim;Peter Airey;Bryan Payne
    • Nuclear Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.85-96
    • /
    • 1981
  • A preliminary study of the isotope hydrology of the Han River Valley is presented. This investigation is part of a project whose overall aim is to relate the levels of heavy metal ions to the dynamics of the groundwater movement in order to establish (i) whether there is any evidence for the deterioration in groundwater quality associated with the release of industrial effluents and (ii) if so, to determine the migration path-ways. Evidence is adduced that the recharge mechanism is principally determined by the degree of urbanisation. In the metropolitan area of Seoul, river recharge dominates probably due to the combined effects of reduced infiltration and increased pumpage. In the inter-urban region, the major source of recharge is local precipitation. During the spring sampling period when the river levels were low. evidence was obtained for appreciable groundwater infiltration in the vicinity of the upstream transect. No significant correlations were observed between the levels of heavy metals in the groundwater, and the recharge mechanism, the distance from the river or the electrical conductivity of the samples.

  • PDF