DOI QR코드

DOI QR Code

Seasonal Variation of Nitrogen Loads and Nitrogen Cycling at Tidal Flat Sediments in Nakdong River Estuary

낙동강 하구 갯벌 퇴적물에서 강을 통한 질산염 유입에 따른 질소순환의 계절 변화

  • Lee, Ji-Young (Division of Earth Environmental System, Pusan National University) ;
  • Kwon, Ji-Nam (Division of Earth Environmental System, Pusan National University) ;
  • An, Soon-Mo (Division of Earth Environmental System, Pusan National University)
  • 이지영 (부산대학교 지구환경시스템학부) ;
  • 권지남 (부산대학교 지구환경시스템학부) ;
  • 안순모 (부산대학교 지구환경시스템학부)
  • Received : 2012.04.03
  • Accepted : 2012.05.22
  • Published : 2012.05.31

Abstract

We investigated seasonal variation of sediment-water oxygen and inorganic nitrogen fluxes, and denitrification at tidal flat sediments located in the Nakdong River Estuary from July 2005 to September 2006. Net oxygen fluxes, measured with sediment incubations at in situ temperature, varied from -37.0 to $0.5mmol\;O_2\;m^{-2}\;d^{-1}$. Oxygen fluxes into the sediments from the overlying water increased due to the increased water temperature. Denitrification rate ($4{\sim}2732{\mu}mol\;N\;m^{-2}\;d^{-1}$) in this study was higher compared to the other Korean coast measured with the same method. Denitrification showed the same seasonal variation as oxygen fluxes. Denitrification rate based on $^{15}N$-nitrate showed a strong correlation with nitrate flux into the sediments from the overlying water. Denitrification via "water column supplied nitrate ($D_w$)", calculated from Isotope pairing technique, also correlated well with nitrate flux into the sediments. Nitrate from water column seems to account for seasonal variation of denitrification in Nakdong River Estuary. To understand general patterns and trends of biogeochemical processes of sediments in the Nakdong River Estuary, we categorized biogeochemical fluxes measured in this study according to direction and sizes of fluxes. Type 1(high oxygen and inorganic nitrogen fluxes into the sediments and high denitrification) occurred in summer, whereas Type 2(low oxygen and inorganic nitrogen fluxes into the sediments and low denitrification) occurred in rest of the season. Intertidal flat sediments seem to react sensitively to influence of freshwater from the Nakdong River.

낙동강 하구에 위치한 갯벌 퇴적물에서 2005년 7월부터 2006년 9월까지 퇴적물-수층을 통한 산소와 용존 무기질소 플럭스, 그리고 탈질소화율을 계절별로 조사하였다. 현장 조건 수온에서 퇴적물 배양을 통해 측정된 산소 플럭스의 범위는 $-37.0{\sim}0.5mmol\;O_2\;m^{-2}\;d^{-1}$이었고, 수온이 증가할수록 퇴적물에 의한 산소소모가 많아져, 수층에서 퇴적물로의 산소 플럭스가 증가하였다. 탈질소화율은 $4{\sim}2732{\mu}mol\;N\;m^{-2}\;d^{-1}$의 범위로 같은 방법으로 측정한 국내 연안의 결과보다 높은 값을 나타냈고 산소 플럭스와 유사한 계절변화를 보였다. 질소동위원소를 이용하여 측정된 탈질 소화율은 수층에서 퇴적물로 유입되는 질산염 플럭스와 높은 상관관계를 보였다. Isotope pairing technique에서 계산되는, 총 탈질소화 중 "수층에서 유입된 질산염을 이용하는 탈질소화($D_w$)"도 수층에서 유입되는 질산염 플럭스와 양의 상관 관계를 보여 수층에서 유입되는 질산염이 탈질소화의 계절변동의 원인임을 시사하였다. 여름철에 질산염농도가 높은 담수의 유입 증가가 낙동강 하구 퇴적물로의 질산염 유입과 탈질소화를 촉진시킨 것으로 추정된다. 낙동강 하구 퇴적물에서 생지화학적 과정의 일반적인 패턴 및 경향을 파악하기 위하여, 이 연구에서 측정된 여러 생지화학적 플럭스를 방향과 크기에 따라 분류하여 보았다. 그 결과, 수온과 질산염 유입 변화에 따라서 여름철에는 수층에서 퇴적물로의 산소와 질산염 플럭스가 높게 나타나고 탈질소화도 높은 반면, 여름철을 제외한 나머지 시기에는 이들 플럭스가 낮아, 갯벌 퇴적물의 생지화학적 과정이 낙동강 담수 유입에 민감하게 반응함을 알 수 있었다.

Keywords

References

  1. 고철환, 2001. 한국의 갯벌. 서울대학교출판부, 서울, pp. 543- 642.
  2. 신성교, 백경훈, 홍석진, 2006. 낙동강 하구둑 건설에 따른 해역의 염분 영향분석 및 하구둑 운영 개선방안. 부산발전연구원보고서, pp. 34-36.
  3. 안순모, 이상룡, 최재웅, 2011. 하구 생태 복원을 위한 생태구역 구분; 남해 고성만 고성천 인근 하구의 예. 한국해양학회지, 16: 70-80.
  4. 안순모, 2005. 강화도 갯벌 퇴적물의 산소요구량과 탈질소화의 계절 변화. 한국해양학회지, 10: 47-55.
  5. 양성렬, 송환석, 문창호, 권기영, 양한섭, 2001. 낙동강 하구역의 담수유입에 따른 해양환경 및 일차 생산력 변화. Algae, 16: 165-177.
  6. 윤한삼, 박 순, 이인철, 김헌태, 2008. 낙동강 하구둑 방류수에 의한 하구역 수질의 시공간적 변화. 한국해양환경공학회지, 11: 78-85.
  7. 장성태, 김기철, 2006. 낙동강 하구에서의 해양환경 변화. 한국해양학회지, 11: 11-20.
  8. 조병철, 최중기, 이동섭, 안순모, 현정호, 2005. 경기만 부근 갯벌의 생지화학적 연구: 서문. 한국해양학회지, 10: 1-7.
  9. 허낙원, 이지영, 최재웅, 안순모, 2011. 남해안 주요 하구 갯벌 퇴적물의 탈질소화를 통한 질소 영양염 제거. 한국해양학회지, 16: 81-96.
  10. 환경부, 2007. 훼손된 자연 생태계 복원기술: 낙동강 하구역 습지 생태계 훼손지역 복원 및 관리기술. 051-061-013, 305 pp.
  11. 해양수산부, 2006. 해양환경공정시험방법. pp. 181-182.
  12. An, S. and S.B. Joye, 2001. Enhancement of coupled nitrification denitrification by benthic photosynthesis inshallow estuarine sediments. Limnol. Oceanogr., 46: 62-74. https://doi.org/10.4319/lo.2001.46.1.0062
  13. An, S. and W.S. Gardner, 2002. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Mar. Ecol. Prog. Ser., 237: 41-50. https://doi.org/10.3354/meps237041
  14. An, S., W.S. Gardner, T. Kana, 2001. Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with Membrane Inlet Mass Spectrometry analysis. Appl. Environ. Microbiol., 67: 1171-1178. https://doi.org/10.1128/AEM.67.3.1171-1178.2001
  15. Bianchi, T.S., 2007. Biogeochemistry of estuaries. Oxford university press, New York, pp. 3-10.
  16. Blackburn, T.H., 1996. Nitrogen gas flux from sediments: insights from simulation modelling. Aquat. Microb. Ecol., 10: 201-211.
  17. Blackburn, T.H., K. Henriksen, 1983. Nitrogen cycling in different types of sediments from Danish waters. Limnol. and Oceanogr., 28: 477-493. https://doi.org/10.4319/lo.1983.28.3.0477
  18. Boon, A.R., G.C.A. Duineveld and A. Kokb, 1999. Benthic Organic Matter Supply and Metabolism at Depositional and Non-depositional Areas in the North Sea. Estuar. Coast. Shelf Sci., 49: 747- 761. https://doi.org/10.1006/ecss.1999.0555
  19. Brinkhuis, B.H., Tempel, N.R. and Jones, R.F. 1976. Photosynthesis and respiration of exposed salt-marsh fucoids. Mar. Biol. 34: 349-359. https://doi.org/10.1007/BF00398128
  20. Brix, H., B.K. Sorrell and B. Lorenzen, 2001. Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany, 69: 313-324. https://doi.org/10.1016/S0304-3770(01)00145-0
  21. Cabrita, M.T. and V. Brotas, 2000. Seasonal variation in denitrification and dissolved nitrogen fluxes in intertidal sediments of the Tagus estuary, Portugal. Mar. Ecol. Prog. Ser., 202: 51-65. https://doi.org/10.3354/meps202051
  22. Christensen, P.B., L.P. Nielsen, J. $S(C)^{TM}$ rense and N.P. Revsbech, 1990. Denitrification in nitrate-rich streams: Diurnal and seasonal variation related to benthic oxygen metabolism. Limnol. Oceanogr. 35: 640-651. https://doi.org/10.4319/lo.1990.35.3.0640
  23. Cowan, J.L.W., J.R. Pennock and W.R. Boynton, 1996. Seasonal and interannual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay, Alabama (U.S.A.): regulating factors and ecological significance. Mar. Ecol. Prog. Ser., 141: 229-245. https://doi.org/10.3354/meps141229
  24. Dong, L.F., D.C.O. Thornton, D.B. Nedwell and J.G.C. Underwood, 2000. Denitrification in sediments of the River Colne estuary, England. Mar. Ecol. Prog. Ser., 203: 109-122. https://doi.org/10.3354/meps203109
  25. Fisher, T.R., P.R. Carlson and R.T. Barber, 1982. Sediment nutrient regeneration in three North Carolina estuaries. Estuar. Coast Shelf Sci., 14: 101-116. https://doi.org/10.1016/S0302-3524(82)80069-8
  26. Glud, R.N., 2005. Marine eutrophication and benthic metabolism. In: Drainage basin nutrient inputs and eutrophication: an integrated approach, edited by Wassmann, P. and K. Olli, University of Tromsø, Norway, pp. 147-153.
  27. Herbert, R.A., 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol. Rev. 23: 563-590. https://doi.org/10.1111/j.1574-6976.1999.tb00414.x
  28. Kana, T.M., C. Darkangelo, M.D. Hunt, J.B. Oldham, G.E. Bennett and Cornwell, 1994. Membrane inlet mass spectrometer for rapid high-precision determination of $N_{2}$, $O_{2}$, and Ar in environmental water samples. Anal. Chem., 66: 4166-4170. https://doi.org/10.1021/ac00095a009
  29. Kang, C.K., E.J. Choy, S.K. Paik, H.J. Park, K.S. Lee and S. An, 2007. Contributions of primary organic matter sources to macroinvertebrate production in an intertidal salt marsh (Scirpus triqueter) ecosystem. Mar. Ecol. Prog. Ser., 334: 131-143. https://doi.org/10.3354/meps334131
  30. Kemp, W.M., P. Sampou and M. Mayer, 1990. Ammonium recycling versus denitrification in Chesapeake Bay Sediment. Limnnol. Oceanogr., 35: 1545-1563. https://doi.org/10.4319/lo.1990.35.7.1545
  31. Kemp, W.M., P.A. Sanipou, J. Garber, J. Tuttle and W.R. Boynton, 1992. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: roles of benthic and planktonic respiration and physical exchange processes. Mar. Ecol. Prog. Ser., 85: 137-152. https://doi.org/10.3354/meps085137
  32. Lee, J.G., W. Nishijima, T. Mukai, K. Takimoto, T. Seiki, K. Hiraoka and M. Okada, 1998. Factors to determine the functions and structures in natural and constructed tidal flats. Water Res., 32: 2601-2606. https://doi.org/10.1016/S0043-1354(98)00013-X
  33. Lorenzen, C.J., 1967. Determination of chlorophyll and pheopigments: Spectrophotometric equations. Limnnol. Oceanogr., 12, 343-346 https://doi.org/10.4319/lo.1967.12.2.0343
  34. Lorenzen, J., L.H. Larsen, T. Kjaer and N.P. Revsbech, 1998. Biosensor determination of the microscale distribution of nitrate, nitrate assimilation, nitrification, and denitrification in a diatominhabited freshwater sediment. Appl. Environ. Microbiol., 64: 3264-3269.
  35. Magalhães, C.M., A.A. Bordalo and W.J. Wiebe, 2002. Temporal and spatial patterns of intertidal sediment-water nutrient and oxygen fluxes in the Douro River estuary, Portugal. Mar. Ecol. Prog. Ser., 233: 55-71. https://doi.org/10.3354/meps233055
  36. Middelburg, J.J., G. Klaver, J. Nieuwenhuize, A. Wielemarker, W. de Haas, T. Vlug and J. F. W. A. van der Nat, 1996. Organic matter mineralization in intertidal sediments along an estuarine gradient. Mar. Ecol. Prog. Ser., 132: 157-168. https://doi.org/10.3354/meps132157
  37. Nedwell, D.B. and M. Trimmer, 1996. Nitrogen fluxes through the upper estuary of the Great Ouse, England: the role of the bottom sediments. Mar. Ecol. Prog. Ser., 142: 273-286. https://doi.org/10.3354/meps142273
  38. Nielsen, L.P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiol. Lett., 86: 357-362. https://doi.org/10.1111/j.1574-6968.1992.tb04828.x
  39. Nielsen, L.P., P.B. Chnstensen, N.P. Revsbech and J. Sörensen, 1990. Denitrification and photosynthesis in stream sediment studied with microsensor and whole-core technique. Limnol. Oceanogr., 35: 1135-1144. https://doi.org/10.4319/lo.1990.35.5.1135
  40. Nixon, S.W. and M. Q. Pilson, 1983. Nitrogen in estuarine and coastal marine ecosystems. In. Carpenter EJ, Capone DG (eds) Nitrogen in the manne environment. Academic Press, New York, p. 565-648.
  41. Nixon, S.W., J.W. Ammerman, L.P. Atkinson, V.M. Berounsky, G. Billen, W.C. Biocourt, W.R. Boynton, T.M. Church, D.M. Ditoro, R. Elmgren, J.H. Garber, A.E. Giblin, R.A. Jahnke, N.J.P. Owens, M.E.Q. Pilson and S.P. Seitzinger, 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry, 35: 141-180. https://doi.org/10.1007/BF02179826
  42. Ogilvie, B., D.B. Nedwell, R.M. Harrison, A. Robinson and A. Sage, 1997. High nitrate, muddy estuaries as nitrogen sinks: the nitrogen budget of the River Colne estuary (United Kingdom). Mar. Ecol. Prog. Ser., 150: 217-228. https://doi.org/10.3354/meps150217
  43. Pritchard, D., 1967. Observations of circulation in coastal plain estuaries. In: Estuaries, edited by Lauff, G., American association for Advancement of Science, Washington D.C., 83: 37-44.
  44. Rauch, M., L. Denis and J.C. Dauvin, 2008. The effects of Phaeocystis globosa bloom in the dynamics of the mineralization processes in intertidal permeable sediment in the Eastern English Channel (Wimereux, France). Mar. Pollut. Bull., 56: 1284-1293. https://doi.org/10.1016/j.marpolbul.2008.04.026
  45. Risgaard-Petersen, N, S. Rysgaard, L.P. Nielsen and N.P. Revsbech, 1994. Diurnal variation of denitrification and nitrification in sediment by colonized benthic microphytes. Limnol. Oceanogr., 39: 573-579. https://doi.org/10.4319/lo.1994.39.3.0573
  46. Risgaard-Petersen, N., 2003. Coupled nitrification-denitrification in autotrophic and heterotrophic estuarine sediments: On the influence of benthic microalgae. Limnol. Oceanogr., 48: 93-105. https://doi.org/10.4319/lo.2003.48.1.0093
  47. Rowe, G.T., C.H. Clifford, J.K.Jr. Smith and P.L. Hamilton, 1975. Benthic nutrient regeneration and its coupling to primary productivity in coastal waters. Nature, 255: 215-217. https://doi.org/10.1038/255215a0
  48. Rysgaard, S., N. Risgaard-Petersen, L.P. Nielsen and N.P. Revsbech, 1993. Nitrification and denitrification in lake and estuarine sediments measured by the 15N dilution technique and isotope pairing. Appl. Environ. Microbiol., 59: 2093-2098.
  49. Rysgaard, S., N. Risgaard-Petersen, L.P. Sloth, J. Kim and L.P. Nielsen, 1994. Oxygen regulation of nitrification and denitrification in sediments. Limnol. Oceanogr., 39: 1643-1652. https://doi.org/10.4319/lo.1994.39.7.1643
  50. Rysgaard, S., P.B. Christensen and L.P. Nielsen, 1995. Seasonal variation in nitrification and denitrification in estuarine sediment colonised by benthic microalgae and bioturbating infauna. Mar. Ecol. Prog. Ser., 126: 111-121. https://doi.org/10.3354/meps126111
  51. Sakamaki, T., O. Nishimura and R. Sudo, 2006. Tidal time-scale variation in nutrient flux across the sediment-water interface of an estuarine tidal flat. Est. Coast. Shelf Sci., 67: 653-663. https://doi.org/10.1016/j.ecss.2006.01.005
  52. Seitzinger, S.P., 1988. Denitrification in freshwater and coastal marine ecosystems; ecological and geochemical significance. Limnol. Oceanogr. 33: 702-724. https://doi.org/10.4319/lo.1988.33.4_part_2.0702
  53. Stickland, J.D.H. and T.R. Parsons, 1968. A practical handbook of seawater analysis. Fish. Res. Bd. Can. Bull., 167: 49-80.
  54. Thornton, D.C.O, L.F. Dong, G.J.C. Underwood and D.B. Nedwell, 2007. Sediment-water inorganic nutrient exchange and nitrogen budgets in the Colne Estuary, UK. Mar. Ecol. Prog. Ser., 337: 63-77. https://doi.org/10.3354/meps337063
  55. Thornton, D.C.O., G.J.C. Underwood and D.B. Nedwell, 1999. Effect of illumination and emersion period on the exchange of ammonium across the estuarine sediment-water interface. Mar. Ecol. Prog. Ser., 184: 11-20. https://doi.org/10.3354/meps184011
  56. Viitasalo, S., 2007. Benthic-pelagic coupling in the northern Baltic Sea: importance of bioturbation and benthic predation. Ph.D Thesis, University of Helsinki, Finland 45 pp.

Cited by

  1. Dynamics of the Physical and Biogeochemical Processes during Hypoxia in Jinhae Bay, South Korea vol.33, pp.4, 2017, https://doi.org/10.2112/JCOASTRES-D-16-00122.1
  2. The Characteristics of Spatio-temporal Distribution on Environmental Factors After Construction of Artificial Structure in the Nakdong River Estuary vol.20, pp.1, 2017, https://doi.org/10.7846/JKOSMEE.2017.20.1.1