Browse > Article

Application of Stable Isotopes in Studies of Gas Exchange Processes Between Biosphere and the Atmosphere  

Han, Gwang-Hyun (Department of Agricultural Chemistry, Chungbuk National University)
Chung, Doug-Young (Department of Bioenvironmental Chemistry, Chungnam National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.43, no.2, 2010 , pp. 242-251 More about this Journal
Abstract
In comparison with other terrestrial ecosystems, rice paddies are unique because they provide the primary food source for over 50% of the world's population, and act as major sources of global methane. The present paper summerizes a long-term field study that combine carbon isotopes, and canopy-scale flux measurements in an irrigated rice paddy, in conjugation with continuous monitoring of environmental, and vegetational factors. Both $CO_2$, and methane fluxes were largely influenced by soil temperature, and moisture conditions, especially across drainage events. Soil-entrapped $CO_2$, and methane showed a gradually increasing trend throughout growing season, but rapidly decreased upon flood water drainage. These variations in flux were well correlated with changes in concentration, and isotope ratio of soil $CO_2$, and methane, and of atmospheric $CO_2$, and methane within, and above the canopy. The isotopic signature of the gas exchange process varied markedly in response to change in contribution of soil respiration, belowground storage, fraction of $CO_2$ recycled, magnitude, and direction of $CO_2$ exchange, transport mechanism, and fraction of methane oxidized. Our results clearly demonstrate that stable isotope analysis can be a useful tool to study underlying mechanisms of gas exchange processes under natural conditions.
Keywords
Biosphere-atmosphere interaction; Soil respiration; Methane production; Carbon isotope; Water management;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Keeling, C.D. 1958. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta. 13:322-334.   DOI   ScienceOn
2 Bilek, R.S., S.C. Tyler, R.L. Sass, and F.M. Fisher. 1999. Differences in $CH_{4}$ oxidation and pathways of production between rice cultivars deduced from measurements of $CH_{4}$ flux and 13C of $CH_{4}$ and $CO_{2}$, Global Biogeochem. Cycles. 13:1029-1044.   DOI   ScienceOn
3 Bowling, D.R., McDowell, N.G., Bond, B.J., Law, B.E., and Ehleringer, J.R. 2002. $^{13}C$ content of ecosystem respiration is linked to precipitation and vapor pressure deficit, Oecologia. 131: 113-124.   DOI   ScienceOn
4 Yakir, D., and X.F. Wang. 1996. Fluxes of $CO_{2}$ and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature. 380:515.   DOI
5 Lai, C.T., A.J. Schauer, C. Owensby, J.M. Harn, and J.R. Ehleringer. 2003. Isotopic air sampling in a tallgrass prairie to partition net ecosystem $CO_{2}$ exchange. Journal of Geophysical Research- Atmospheres. 108, 4566, doi: 10.1029/2002JD003369.
6 Fey, A., P. Claus, and R. Conrad. 2004. Temporal change of 13C-isotope signatures and methanogenic pathways in rice field soil incubated anoxically at different temperatures, Geochim. Cosmochim. Acta. 68:293-306.   DOI   ScienceOn
7 Han, G.H., H. Yoshikoshi, H. Nagai, T. Yamada, M. Saito, A. Miyeta. and Y. Harazono, 2005a, Concentration and carbon isotope profiles of $CH_{4}$ in paddy rice canopy: Isotopic evidence for changes in $CH_{4}$ emission pathways upon drainage, Chemical Geology. 218:25-40.   DOI   ScienceOn
8 Styles, J.M., M.R. Raupach, G.D. Farquhar, O. Kolle, K.A. Lawton, W.A. Brand, R.A. Werner, A. Jordan, E.D. Schulze, O. Shibistova, and J. Lloyd. 2002. Soil and canopy $CO_{2}$, $^{13}CO_{2}$, $H_{2}O$ and sensible heat flux partitions in a forest canopy inferred from concentration measurements. Tellus Series B- Chemical and Physical Meteorology. 54:655-676.   DOI   ScienceOn
9 Schutz., H., W. Seiler, and R. Conrad. 1989. Processes involved in formation and emission of methane in rice paddies. Biogeochemistry. 7:33-53.
10 Sternberg, L.D.S., M.Z. Moreira, L.A. Martinelli, R.L. Victoria, E.M. Barbosa, L.C.M. Bonates, and D.C. Nepstad. 1997. Carbon dioxide recyeling in two Amazonian tropical forests. Agricultural and Forest Meteorology. 88:259-268.   DOI
11 Miller, J.B., P.P. Tans, J.W.C. White, T.J. Conway, and B.W. Vaughn. 2003. The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes. Tellus Series B- Chemical and Physical Meteorology. 55:197-206.   DOI   ScienceOn
12 Wang, X.F., and D. Yakir. 2000. Using stable isotopes of water in evapotranspiration studies. Hydrological Processes. 14:1407-1421.   DOI   ScienceOn
13 Intergovernmental Panel on Climate Change (IPCC). 2001. Climate Change 2001: The Scientific Basis, Houghton et al. (eds.), Cambridge Univ. Press, New York, pp. 385-391.
14 Han, G.H., H.Yoshikoshi, H. Nagai, T. Yamada, K. Ono, M. Mano, and A. Miyata. 2007. Isotopic disequilibrium between carbon assimilated and respired in a rice paddy as influenced by methanogenesis from $CO_{2}$, J. Geophys. Res. 112:G02016, doi:10.1029/2006JG000219.
15 Zobitz, J.M., J.P. Keener, H. Schnyder, and D.R. Bowling. 2006. Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research. Agricultural and Forest Meteorology. 136:56-75.   DOI
16 Yepez, E.A., D.G. Williams, R.L. Scott, and G.H. Lin. 2003. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agricultural and Forest Meteorology. 119:53-68.   DOI
17 Wassmann, R., H.U. Neue, R.S. Lantin, J.B. Aduna, M.C.R. Alberto, M.J. Andales, M.J. Tan, H.A.C. Denter van der Gen, H. Hoffmann. H. Papen, H. Rennenberg, and W. Seiler. 1994. Temporal patterns of methane emissions from wetland rice fields treated by different modes of N application. J. Geophys. Res. 99:16457-16462.   DOI
18 Yagi, K., H. Tsuruta, K. Kanda, and K. Minami. 1996. Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring, Global Biogeochem. Cycles. 10:255-267.   DOI   ScienceOn
19 Yakir, D., and L.D.L. Sternberg. 2000. The use of stable isotopes to study ecosystem gas exchange. Oecclogia. 123:297-311.   DOI   ScienceOn
20 Tyler, S.C., R.S. Bilek, R.L. Sass, and F.M. Fisher. 1997. Methane oxidation and pathways of production in a Texas paddy field deduced from measurements of flux, $^{13}C$, and D of $CH_4$. Global Biogeochemical Cycles. 11:323-348.   DOI   ScienceOn
21 Pataki, D.E., J.R. Ehleringer, L.B. Flanagan, D. Yakir, D.R. Bowling, C.J. Still, N. Buchmann, J.O. Kaplan, and J.A. Berry. 2003. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles. 17:1022, doi:10.1029/2001GB001850.
22 Miyata, A., R. Leuning, O.T. Denmead, J. Kim, and Y. Harazono. 2000. Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agricultural and Forest Meteorology. 102:287-303.   DOI   ScienceOn
23 Greaver, T., L.D.L. Stemberg, B. Schaffer, and T. Moreno. 2005. An empirical method of measuring $CO_{2}$. recycling by isotopic enrichment of respired $CO_{2}$, Agricultural and Forest Meteorology. 128:67-79.   DOI   ScienceOn
24 Griffis, T.J., T.A. Black, D. Gaumont-Guay, G.B. Drewitt, Z. Nesic, A.G. Barr, K. Morgenstern, and N. Kljun. 2004. Seasonal variation and partitioning of ecosystem respiration in a southern boreal aspen forest. Agricultural and Forest Meteorology. 125:207-223.   DOI
25 Conrad, R., M. Klose, and P. Claus. 2002. Pathway of $CH_{4}$ formation in anoxic rice field soil and rice roots determined by $^{13}C$-stable isotope fractionation. Chemosphere. 47:797-806.   DOI   ScienceOn
26 Ehleringer, J.R., and C.S. Cook. 1998. Carbon and oxygen isotope ratios of ecosystem respiration along an Oregon conifer transect: preliminary observations based on small-flask sampling. Tree Physiology. 18:513-519.   DOI   ScienceOn
27 Cicerone, R.J., and J.D. Shetter. 1981. Sources of atmospheric methane: Measurements in rice paddies and a discussion. Journal of Geophysical Research- Oceans and Atmospheres. 86:7203-7209.   DOI
28 Heinsch, F.A., J.L. Heilman, K.J. McInnes, D.R. Cobos, D.A. Zuberer, and D.L Roelke. 2004. Carbon dioxide exchange in a high marsh on the Texas Gulf Coast: effects of freshwater availability. Agric. For. Meteorol. 125:159-172.   DOI   ScienceOn
29 Han, G.H., H. Yoshikcshi, H. Nagai, T. Yamada, M. Saito, A. Miyata, and Y. Harazono. 2005b. Late growing season $CH_{4}$ budget in a rice paddy determined using stable carbon isotope, emission flux and soil storage measurements. Organic Geochemistry. 36:789-801.   DOI   ScienceOn
30 Han, G.H., H. Yoshikoshi. H. Nagai, T. Yamada, M. Saito, A. Miyata, and A. Harazono. 2003. Concentration and carbon isotope profiles of $CH_{4}$ in paddy rice canopy. Geochimica et Cosmochimica Acta. 67:A131-A131.
31 Saito, M., A. Miyata, H. Nagai, and T. Yamada. 2005. Seasonal variation or carbon dioxide exchange In rice paddy field in Japan. Agricultural and Forest Meteorology. 135:93-109.   DOI   ScienceOn
32 Sass, R.L., F.M. Fisher, F.T. Tumerm and M.F. Jund. 1991. Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation. Global Biogeochemical Cycles. 5:335-350.   DOI
33 Baldocchi, D., E. Falge, L.H. Gu, R. Olson, D. Hollinger, S. Running, P. Anthoni, C. Bernhofer, K. Davis, R. Evans, J. Fuentes, A. Goldstein, G. Katul, B. Law, X.H. Lee, Y. Malhi, T. Meyers, W. Munger, W. Oechel, K.T.P. U, K. Pilegaerd, H.P. Schmid, R. Valentini, S. Verma, T. Vesala, K. Wilson, and S. Wofsy, 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, Bulletin of the American Meteorological Society. 82:2415-2434.   DOI   ScienceOn
34 Kruger, M., G. Eller, R. Conrad, and P. Frenzel. 2002. Seasonal variation in pathways of $CH_{4}$ production and in $CH_{4}$ oxidation in rice fields determined by stable carbon isotopes and specific inhibitors. Global Change Biology. 8:265-280.   DOI   ScienceOn
35 Holzapfel-Pschorn, A., and W. Seiler. 1986. Methane emission during a cultivation period from an Italian rice paddy. Journal of Geophysical Research- Atmospheres. 91:1803-1814.
36 Campbell, C.S., J.L. Heilman, K.J. McInnes, L.T. Wilson, J.C. Medley, G. Wu, and D.R. Cobos. 2001. Diet and seasonal variation in $CO_{2}$ flux of irrigated rice. Agric. For. Meteorol. 108:15-27.   DOI   ScienceOn
37 Chanton, J.P., G.J. Whiting, N.E. Blair, C.W. Lindau, and P.K. Bollich. 1997. Methane emission from rice: Stable isotopes, diurnal variations, and $CO_{2}$ exchange. Global Biogeochemical Cycles. 11:15-27.   DOI   ScienceOn
38 Bowling, D.R., D.E. Pataki, and J.R. Ehleringer. 2003. Critical evaluation of micrometeorological methods for measuring ecosystem-atmosphere isotopic exchange of $CO_{2}$, Agricultural and Forest Meteorology. 116:159-179.   DOI
39 Bowling, D.R., P.P. Tans, and R.K. Monson, 2001. Partitioning net ecosystem carbon exchange with isotopic fluxes of $CO_{2}$, Global Change Biology. 7:127-145.   DOI   ScienceOn
40 Boehme, S.E., N.E. Blair, J.P. Chanton, and C.S. Martens. 1996. A mass balance of 13C and 12C in an organic-rich methane-producing marine sediment, Geochim. Cosmochim. Acta. 60:3835-3848.   DOI   ScienceOn