Browse > Article
http://dx.doi.org/10.7850/jkso.2009.14.2.080

High Remineralization and Denitrification Activity in the Shelf Sediments of Dok Island, East Sea  

Jeong, Jin-Hyun (Division of Earth Environmental System, Pusan National University)
Kim, Dong-Seon (Climate Change & Coastal Disaster Research Department, KORDI)
Lee, Tae-Hee (Southern Coastal Environmental Research Department, KORDI)
An, Soon-Mo (Division of Earth Environmental System, Pusan National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.14, no.2, 2009 , pp. 80-89 More about this Journal
Abstract
The rates of sediment oxygen demand(SOD) and denitrification(DNF) were measured using $^{15}N$ isotope pairing technique in intact sediment cores in the shelf of Dok Island. The SOD and DNF in the continental shelf of Dok Island were ranged from 1.04 to $9.08\;mmol\;m^{-2}\;d^{-1}$ and from 7.06 to $37.67\;{\mu}mol\;m^{-2}\;d^{-1}$, respectively. The SOD and DNF values in this study are higher than typical deep sea sediment. The SOD and DNF in this study were high in the high organic matter content sediment and high organic matter content was promotive of coupled nitrification-denitrification. Organic carbon contents in surface sediment ranged from 1.8 to 2.4%, which is higher than typical deep sea sediments. Therefore we conclude that the organic matter content in surface sediment is determined by the nature of the export production not the water depth in East sea sediment and the nature of the export production also determines remineralization processes such as SOD and DNF in East sea/Ulleung Basin sediment.
Keywords
East Sea; Denitrification; Sediment oxygen demand; remineralization; Dok island;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 An, S.M. and Joye, S.B., 2001. Enhancement of coupled nitrification- denitrification by benthic photosynthesis in shallow estuarine sediments. Limnol. Oceanogr. 46: 62−74   DOI   ScienceOn
2 Arrigo, K.R., 2004. Marine microorganisms and global nutrient cycles. Nature 437: 349−355   DOI   ScienceOn
3 Boudreau, B., 1997. Diagenic models and their implementation. Springer
4 Cai, W.J. and Reimers, C.E., 1995. Benthic oxygen flux, bottom water oxygen concentration and core top organic carbon content in the deep northeast Pacific Ocean. Deep-Sea Research I 42: 1681−1699   DOI   ScienceOn
5 Capone D.G., Zehr, J.P., Paerl, H.W., Bergman, B. and Carpenter, E.J., 1997. Trichodesmium, a globally significant marine cyano-bacterium. Science 276: 1221–1229   DOI   ScienceOn
6 Chen, C.T.A., Bychkov, A.S., Wang, S.L. and Pavlova, G.Y., 1999. An anoxic Sea of Japan by the year 2200? Marine Chemistry 67: 249−265   DOI   ScienceOn
7 Cho, H.J., Moon, C.H., Yang, H.S., Kang, W.B. and Lee, K.W., 1997. Regeneration Processes of Nutrients in the Polar Front Area of the East Sea: III. Distribution Patterns of Water Masses and Nutrients in the Middle-Northern East Sea of Korea in October, 1995. J. Korean Fish Soc. 30: 393−407
8 Grenz, C., Denis, L., Boucher, G., Chauvaud, L., Clavier, J., Fichez, R. and Pringault, O., 2003. Spatial variability in Sediment Oxygen Consumption under winter conditions in a lagoonal system in New Caledonia (South Pacific). J. Experimental Marine Biology and Ecology 285: 33−47   DOI   ScienceOn
9 Horrigan, S.G., 1981. Primary Production under the Ross Ice Shelf, Antarctica. Limnol. Oceanogr. 26: 378−382   DOI   ScienceOn
10 Lee, T.S., Kim, I.N., Kang, D.J. and Kim, D.S., 2007. Implication of Deep Nitrite in the Ulleung Basin. J. Oceanol. Soc. Korea 12: 239−243
11 Middleburg, J.J., Soetaert K. and Herman, P.M., 1996. Evaluation of the nitrogen isotope pairing method for measuring benthic denitrification: A simulation analysis. Limnol. Oceanogr. 41: 1839−1844   DOI   ScienceOn
12 Seiki, T., Izawa, H., Date, E. and Sunahara H., 1994. Sediment oxygen demand in Hiroshima bay. Wat. Res. 28: 385−393   DOI   ScienceOn
13 Smith, D.C., Simon, M., Alldredge, A.L. and Azam, F., 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359: 139−142   DOI
14 Kana, T.M., Darkangelo, C., Hunt, M.D., Oldham, J.B., Bennett, G.E. and Cornwell, J.C., 1994. Membrane inlet mass spectrometer for rapid high precision determination of $N_2$, $O_2$, and Ar in environmental water samples. Anal. Chem. 66: 4166−4170   DOI   ScienceOn
15 Wenzhofer, F., Holby O. and Khols, O., 2001. Deep penetrating benthic oxygen profiles measured in situ by oxygen optodes. Deep-Sea Research I 48: 1741−1755   DOI   ScienceOn
16 Yool, A., Martin, A.P., Ferna'ndez, C. and Clark, D.R., 2007. The significance of nitrification for oceanic new production. Nature 447: 999−1002   DOI   PUBMED   ScienceOn
17 Soetaert, K., Herman, P.M.J. and Middelburg, J.J., 1996. A model of early diagenetic processes from the shelf to abyssal depths. Geochimica et Cosmochimica Acta, 60(6): 1019−1040   DOI   ScienceOn
18 Broerse, A.T.C., 2000. Coccolithophore export production in selected ocean environments: seasonality, biogeography, carbonate production. Ph. D. Thesis, Free University Amsterdam, Amsterdam, 185
19 Brunnegard, J., Grandelb, S., Stahla, H. Tengberga, A. and Halla, P.O.J., 2004. Nitrogen cycling in deep-sea sediments of the Porcupine Abyssal Plain, NE Atlantic. Oceanography 63: 159−181   DOI   ScienceOn
20 Jahnke, R.A. and Jahnke, D.B., 2000. Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depocenter. Deep-Sea Research I 47(8): 1405−1428   DOI   ScienceOn
21 Kawahata, H., Nohara, M., Aoki, K., Minoshima K. and Gupta, L. P., 2006. Biogenic and abiogenic sedimentation in the northern East China Sea in response to sea-level change during the Late Pleistocene. Global and Planetary Change 53: 108−121   DOI   ScienceOn
22 Nielsen, L.P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microb Ecol. 86: 357−362   DOI   ScienceOn
23 Yanagi, T., 2002. Water, Salt, Phosphorus and Nitrogen Budgets of the Japan Sea. Oceanography 58, 797−804   DOI
24 Chung, C.S., Shim, J.H., Park, Y.C. and Park, S.G., 1989. Primary Productivity and Nitrogenous Nutrients Dynamics in the East Sea of Korea. J. Oceanol. Soc. Korea 24: 52−66
25 Harrison, P.D. and Mann, K.H., 1975. Detritus formation from eelgrass (Zostera marina): The relative effects of fragmentation, leaching and decay. Limnol. Oceanogr. 20: 924−934   DOI   ScienceOn
26 Smith, K.L., Jr. Lauer, M.B. and Brown, N.O., 1983. Sediment community oxygen consumption and nutrient exchange in the central and eastern North Pacific. Limnol. Oceanogr., 28(5), 882−898   DOI   ScienceOn
27 Reschke, C.J., Ittekkot, V. and Panin, N., 2000. The nature of organic matter in the Danube river particles and north-western Black Sea sediments. Estuarine Coastal Shelf Sci. 54: 563−574   DOI   ScienceOn
28 Sorensen, J., Hydes, D. J. and Wilson, T. R. S., 1984. Denitrification in a deep-sea sediment core from the eastern equatorial Atlantic. Limnol. Oceanogr. 29: 653−657   DOI   ScienceOn
29 Tuominen, L., Heinanen, A., Kuparinen, J. and Nielsen, L.P., 1998. Spatial and temporal variability of denitrification in the sediments of the northern Baltic Proper. Marine Ecology Progress Series 172: 13−24   DOI
30 Howes, B.L., John, W., Dacay, H. and King, G.M., 1984. Carbon flow through oxygen and sulfate reduction pathways in salt marsh sediments. Limnol. Oceanogr. 29: 1037−1051   DOI   ScienceOn
31 Seitzinger, S.P. and Giblin, A.E., 1996. Estimating denitrification in North Atlantic continental shelf sediments. Biogeochemistry 35: 235−260   DOI   ScienceOn
32 Wijsman, J.W. M., Herman, P.M.J., Middelburg, J.J. and Soetaert, K., 2002. A Model for Early Diagenetic Processes in Sediments of the Continental Shelf of the Black Sea. Estuarine, Coastal and Shelf Science, 53: 403−421   DOI   ScienceOn
33 Herbert, R.A., 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol. Rev. 23(5): 563−590   DOI   PUBMED   ScienceOn
34 Walsh, J.J., 1991. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 350: 53–55   DOI
35 Walsh, J.P. and Nittrouer, C.A., 1999. Observations of sediment flux to the Eel continental slope, northern California. Marine Geology 154: 55−68   DOI   ScienceOn
36 Zumft, W.G., 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61: 533−616
37 Calow, P. 1975. The feeding strategies of two freshwater gastropods, Ancylusfluviatilis Mull. and Planorbis contortus Linn. (Pulmonata) in terms of ingestion rates and absorption efficiencies. Oecologia 20: 33−49   DOI
38 Emerson, S., Quay, P., Karl, D., Winn, C., Tupas, L. and Landry, M., 1997. Experimental determination of the organic carbon flux from open-ocean surface waters. Nature 389: 951−954   DOI   ScienceOn
39 Nielsen, L.P., Risgaard-Petersen, N., Rysgaard, S. and Blackburn, T.H., 1996. Reply to the note by Middelburg et al. Limnol. Oceanogr. 41: 1845−1846   DOI   ScienceOn
40 Rowe, G.T., Morse, J., Nunnally, C. and Boland, G.S., 2008. Sediment community oxygen consumption in the deep Gulf of Mexico. Deep-Sea Research II 55: 2686−2691   DOI   ScienceOn
41 Pilskaln, C.H., Paduan, J.B. and Chavez, F.P., 1997. Carbon export and regeneration in the coastal upwelling system of Monterey Bay, central California. Oceanographic Literature Review 44: 685−686   DOI   ScienceOn
42 Ziveri, P., Broerse, A., van Hinte, J.E., Wesbroek, P. and Honjo, S., 2000. The fate of coccoliths at 48N 21W, north eastern Atlantic. Deep-Sea Research II 47: 1853−1875   DOI   ScienceOn
43 Sprengel, C., Baumann K.H. and Neuer, S., 2000. Seasonal and interannual variation of coccolithophore fluxes and species compositions in sediment traps north of Gran Canaria ($29^{\circ}$N $15^{\circ}$W). Marine Micropaleontology 39: 157−178   DOI   ScienceOn
44 Sayles, F.L., Martin, W.R. and Deuser, W.G., 1994. Response of benthic oxygen demand to particulate organic carbon supply in the deep sea near Bermuda. Nature 371: 686−689   DOI   ScienceOn
45 Devol, A.H., 1991. Direct measurement of nitrogen gas fluxes from continental shelf sediments. Nature 349: 319−321   DOI
46 Gunnison, D. and Alexander, M., 1975. Resistance and susceptibility of algae to decomposition by natural microbial communities. Limnol. Oceanogr. 20: 64−70   DOI   ScienceOn
47 Romero, O., Boeckel, B., Donner, B., Lavik, G., Fischer, G. and Wefer, G., 2002. Seasonal productivity dynamics in the pelagic central Benguela System inferred from the flux of carbonate and silicate organisms. J. Marine Systems 37, 259−278   DOI   ScienceOn
48 Cociasu, A., Dorogan, L., Humborg, C. and Popa, L., 1996. Long-term ecological changes in the Romanian coastal waters of the Black Sea. Mar. Pollut. Bull. 32: 32−38   DOI   ScienceOn
49 Laursen, A.E. and Seitzinger, S.P., 2002. The role of denitrification in nitrogen removal and carbon mineralization in Mid-Atlantic Bight sediments. Continental Shelf Research 22: 1397−1416   DOI   ScienceOn
50 Hoppe, H.G., Ducklow, H. and Karrasch, B., 1993. Evidence for dependency of bacterial growth on enzymatic hydrolysis of particulate organic matter in the mesopelagic ocean. Mar. Ecol. Prog. Ser. 93: 273−283
51 Jahnke, R., 1996. The global ocean flux of particulate organic carbon. Global Biogeochemical Cycles 10: 71−88   DOI
52 Straub, K.L., Benz, M., Schink, B. and Widdel, F., 1996. Anaerobic, nitrate dependent microbial oxidation of ferrous iron. J. Appl. Environ. Microbiol. 62: 1458−1460
53 Giles, H., Pilditch, C.A., Nodder, S.D., Zeldis, J.R. and Currie, K., 2003. Benthic oxygen fluxes and sediment properties on the northeastern New Zealand continental shelf. Continental Shelf Research 27: 2373−2388   DOI   ScienceOn
54 Banse, K., 1990. New views on the degradation and disposition of organic particles as collected by sediment traps in the open sea. Deep-Sea Research 37: 1177−1195   DOI   ScienceOn
55 Rabouille, C., Denis, L., Dedieu, K., Stora, G., Lansard B. and Grenz, C., 2003. Oxygen demand in Coastal marine sediments: comparing in situ microelectrodes and laboratory core incubations. J. Exp. Mar. Biol. Ecol. 285−286, 49−69   DOI   ScienceOn
56 Kim, D.S., Choi, M.S., Oh, H.Y., Kim, K.H. and Noh, J.H., 2009. Estimate of Particulate Organic Carbon Export Flux Using $^{234}Th/^{238}U$ Disequilibrium in the Southwestern East Sea During Summer. J. Oceanol. Soc. Korea 14: 1−9
57 Zehr, J.P. and Ward, B.B., 2002. Nitrogen cycling in the ocean: New perspectives on processes and Paradigms. Environmental Microbiology 68: 1015−1024   DOI
58 Focht, D.D. and Verstraete, W., 1977. Biochemical ecology of nitrification and denitrification. Adv. Microbiol. Ecol. 1: 135−214
59 Lee, T.H., Hyun, J.H., Mok, J.S. and Kim, D.S., 2008. Organic carbon accumulation and sulfate reduction rates in slope and basin sediments of the Ulleung Basin, East/Japan Sea. Geo-Mar. Lett. 28: 153−159   DOI
60 Balzer, W., W. Helder, E. Epping, L. Lohse, and S. Otto, 1998. Benthic denitrification and nitrogen cycling at the slope and rise of the N.W. European Continental Margin (Goban Spur). Oceanography, 42: 111–126   DOI   ScienceOn
61 Nowicki, B.L., Requintina, E., van Keuren, D. and Kelly, J.R., 1997. Nitrogen losses through sediment denitrification in Boston Harbor and Massachusetts Bay. Estuaries 20: 626−639   DOI   ScienceOn
62 Jahnke, R. and Jackson, G., 1991. The spatial distribution of sea floor oxygen consumption in the Atlantic and Pacific oceans. In: Rowe, G., Pariente, V. (Eds.), Deep-sea Food Chains and the Global Carbon Cycle. NATO Advanced Research Workshop. Kluwar, Boston, MA, 295−307
63 de Jesus Mendes, P.A., Thomsen, L., Holscher, B., de Stigter H.C. and Gust, G., 2007. Pressure effects on the biological degradation of organo-mineral aggregates in submarine canyons. Marine Geology 246: 165−175   DOI   ScienceOn
64 Nakamura, Y., 2003. Sediment oxygen consumption and vertical flux of organic matter in the Seto Inland Sea, Japan. Estuarine, Coastal and Shelf Science 56: 213−220   DOI   ScienceOn