• Title/Summary/Keyword: environment-friendly construction materials

Search Result 156, Processing Time 0.03 seconds

An Assessment of the Impact of Construction Activities on the Environment in Uganda: A Case Study of Iganga Municipality

  • Muhwezi, Lawrence;Kiberu, Faisal;Kyakula, Michael;Batambuze, Alex O.
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.4
    • /
    • pp.20-24
    • /
    • 2012
  • Construction while being an economic activity that provides facilities and infrastructure, it is beneficial to man in some aspects and detrimental in others. There have been environmental concerns related to construction activities globally which mainly focus on atmospheric emissions, depletion of natural resources and energy issues. This study was carried out to assess the impacts of construction activities on the environment in Iganga Municipality and to propose measures for their mitigation. The methodology included: review of relevant literature, observations of the general environmental effects of construction activities, focus groups and a survey conducted among construction industry role players to determine their perceptions and opinions regarding environmental impact of construction activities. The collected data was presented in tabular form and analysed by description of responses to questions. The study revealed that forests were the most greatly degraded due to high demand of timber for construction followed by wetlands degradation. The findings of this study will be useful to architects, designers and builders in order to carefully design buildings and other infrastructure that are environmentally friendly and sustainable. Construction materials and their mode of acquisition are harmful threats to the environment. There is need to reduce the consumption of these materials through recycling and reusing wastes to reduce on waste generation, use of virgin materials and the subsequent waste of energy used in new material production.

Analyses on Environment-friendliness of Waterproof Materials Based on Fish Toxicity Test (어독성 실험에 따른 방수재 친환경 특성 분석)

  • Kim, Sung-Kyun;Woo, Ji-Keun;Lee, Im-Gyu;Yoo, Hy-Ein;Jeong, Jae-Wook
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.57-68
    • /
    • 2010
  • The purpose of this study is to analyze the characteristics of environment-friendliness of waterproof materials based on comprehensive experiments on waterproofness in terms of coefficients of permeability, harmfulness of waterproof materials and fish toxicity of Oryzias latipes mortality to verify eco-toxicity of each method of construction and waterproof material, which are to be applied by taking eco-toxicity into account when building ecological flows in upper areas on natural and artificial grounds. As a result, the following conclusions have been reached in this study: 1. In regard of the harmfulness analyzed, each material showed a different result of analytical value in each lab tank. Compared to input water, pH, COD, SS, T-P, and T-N values increased a little, but DO value decreased. The value of turbidity analyzed independent of the water quality standard of aquatic ecosystem set forth by the Ministry of Environment increased a little compared to the value in input water. 2. In the experiment of fish toxicity, compacted quicklime, cement fluid waterproof material, cement mortar waterproof material and bentonite powder were found to have 100% of fish mortality, respectively, and membrane waterproof material showed 83.3% of mortality, indicating strong fish toxicity. Improved asphalt sheet (63.3%) and synthetic rubber sheet (53.3%) were analyzed to have medium fish toxicity, while bentonite sheet (6.7%), Hwang-toh (6.7%) and clay (3.3%) showed relatively lower mortality and fish toxicity. 3. Regarding the analysis on waterproofness in terms of the coefficient of permeability of each waterproof material, improved asphalt sheet, synthetic rubber sheet, membrane waterproof material, cement fluid and mortar waterproof material and bentonite sheet were found impervious in case no leakage takes place in construction. Bentonite powder was found practically impervious based on the analytical results from the experiment done in compliance with weight ratios. So were the clay and Hwang-toh from the experimental results. To sum up such results as found in the experiment mentioned so far, the values of harmfulness and waterproofness analyzed were different in each lab tank, but there was absolutely little correlation with the mortality gained from the experiment on fish toxicity. In the experiment of fish toxicity, environment-friendly waterproof materials were analyzed, and it was found that clay, Hwang-toh and bentonite sheet are highly environment-friendly. In contrast, synthetic rubber and improved asphalt sheets were found to have medium-level environment-friendliness. Also, membrane water-proof materials, compacted quicklime, cement fluid and mortar waterproof material and bentonite powder were analyzed to have low environment-friendliness.

Characteristics of shear strength of coarse-grained materials using large triaxial test equipment (대형삼축시험 장비를 이용한 조립재료의 전단강도 특성)

  • Jin, Guang-Ri;Snin, Dong-Hoon;Im, Eun-Sang;Kim, Ki-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1017-1024
    • /
    • 2009
  • In the past few decades, the rockfill embankment dam, which has superior workability and economy, has become a major trend. In Korea, most of the embankment dams are rockfill dams, but recently, in response to the demand for sustainable development and environmentally-friendly water resource development, the sand and gravel in streams has become a major construction material for dams, rather than the non-economic rockfill, and its application examples have also increased. In this study, a large triaxial test was performed, with construction samples of different maximum sizes, in parallel with the grading method at the 'B Dam' construction site in Korea, and the effects of the different maximum sizes on the strain of the dam construction material and on the shear strength characteristics were analyzed to provide the basic data for determining the strength characteristics of the coarse-grained materials by the maximum size.

  • PDF

Improvement of the geotechnical engineering properties of dune sand using a plant-based biopolymer named serish

  • Shabani, Khosro;Bahmani, Maysam;Fatehi, Hadi;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.535-548
    • /
    • 2022
  • Recently, the construction industry has focused on eco-friendly materials instead of traditional materials due to their harmful effects on the environment. To this end, biopolymers are among proper choices to improve the geotechnical behavior of problematic soils. In the current study, serish biopolymer is introduced as a new binder for the purpose of sand improvement. Serish is a natural polysaccharide extracted from the roots of Eremurus plant, which mainly contains inulins. The effect of serish biopolymer on sand treatment has been investigated through performing unconfined compressive strength (UCS), California bearing ratio (CBR), as well as wind erosion tests. The results demonstrated that serish increased the compressive strength of dune sand in both terms of UCS and CBR. Also, wind erosion resistance of the sand was considerably improved as a result of treatment with serish biopolymer. A microstructural study was also conducted via SEM images; it can be seen that serish coated the sand particles and formed a strong network.

Usage of Indigenous Material for Sustainable Construction at Mae-Hae, Thailand - Focused on Rammed Earth Method - (태국 매해 지역에서의 지속가능한 건축재료 활용연구 - 흙다짐 공법을 중심으로 -)

  • Kim, Doo-Soon;Jeong, Sang-Mo
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • Limited resources for construction material in the Mae-Hae region, a remote Northern Thailand, acted as an impetus to introduce a new way for constructing their dwellings. The new construction material brought new construction methodology, namely, using earth and bamboo which are indigenous materials, readily available for them to use. Using indigenous material at Mae-Hae region was most ecological and logical method for establishing sustainable dwellings both in terms of monetary and ecological reasons. Prior to the construction at Mae-Hae, Thailand, series of experimental tests on the strength of rammed earth were performed off site at our university and also brought soil samples from the actual job site at Mae-Hae for detailed soil analysis. Through the tests, integrity of the earth and characteristics of the soil were established to build a small senior citizen center as an example. This appropriate technology is expected to contribute to the sustainable construction at Mae-Hae.

Environment-Friendly Bonding of Decorative Veneer by SIS-Based Hotmelt Pressure-Sensitive Adhesives (환경친화성 SIS계 핫멜트 점착제를 이용한 무늬목 접착)

  • Lim, Dong-Hyuk;Kim, Sumin;Park, Young-Jun;Kim, Hyun-Joong;Yang, Han-Seung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.22-29
    • /
    • 2006
  • The overlaid panels are important materials in interior and construction with added surface layers (PVC films, decorative paper, decorative veneer). Generally, the adhesive for decorative veneer to wood-based panel is urea-formaldehyde (UF) adhesive which cause the emission of formaldehyde during not only the manufacturing process, but also service life. In this study, environment-friendly SIS-based hotmelt pressure-sensitive adhesive (PSA) was evaluated as a adhesive for bonding a decorative veneer. The various SIS-based hotmelt PSA was blended as a function of diblock content, softening point of tackifier, tackifier content, and applied to bonding the decorative veneer.

The effect of wollastonite powder with pozzolan micro silica in conventional concrete containing recycled aggregate

  • Dinh-Cong, Du;Keykhosravi, Mohammad. H.;Alyousef, Rayed;Salih, Musab N.A.;Nguyen, Hoang;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Poi-Ngian, Shek
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.541-552
    • /
    • 2019
  • Construction development and greenhouse gas emissions have globally required a strategic management to take some steps to stain and maintain the environment. Nowadays, recycled aggregates, in particular ceramic waste, have been widely used in concrete structures due to the economic and environmentally friendly solution, requiring the knowledge of recycled concrete. Also, one of the materials used as a substitute for concrete cement is wollastonite mineral to decrease carbon dioxide (CO2) from the cement production process by reducing the concrete consumption in concrete. The purpose of this study is to investigate the effect of wollastonite on the mechanical properties and durability of conventional composite concrete, containing recycled aggregates such as compressive strength, tensile strength (Brazilian test), and durability to acidic environment. On the other hand, in order to determine the strength and durability of the concrete, 5 mixing designs including different wollastonite values and recovered aggregates including constant values have been compared to the water - cement ratio (w/c) constant in all designs. The experimental results have shown that design 5 (containing 40% wollastonite) shows only 6.1% decrease in compressive strength and 4.9% decrease in tensile strength compared to the control plane. Consequently, the use of wollastonite powder to the manufacturing of conventional structural concrete containing recycled ceramic aggregates, in addition to improving some of the properties of concrete are environmentally friendly solutions, providing natural recycling of materials.

Usage Status and Environmental Sustainability Guidelines for Building Exterior Materials (건축물 외장재의 사용 현황과 친환경 성능)

  • Park, Jong-Soo;Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5861-5869
    • /
    • 2014
  • Existing studies of building exterior materials have focused on the colors or textures of cladding, and in terms of a design planning approach, have focused on the use of the environment and equipment and fire safety topics from an engineering perspective. As a result, little research has been done on performance guidelines for exterior materials, specifically according to the building type. Research into eco-friendly cladding materials is also in the rudimentary stage in a practical sense. In this study, the use of exterior materials over the last ten years in domestic construction was analyzed. The usage status of building exterior materials was evaluated quantitatively by frequency analysis, and its environmental performance is proposed through complex (qualitative + quantitative) analysis. The average value of the exterior material type number used for all analyzed buildings was 2.59. Glass, metal, stone, resin, cement, wood, and clay were used in that order with regard to the usage status. The analysis found that five of the materials satisfied the high efficiency and eco-friendly grading in terms of the four characteristics of an eco-friendly exterior. A list of eight eco-friendly elements was also proposed. The eco-friendly elements and characteristics of the exterior materials were derived to provide basic guidelines for domestic construction companies and design offices.

Noise Reduction Method for Environment Friendly Housing Estate (신도시 친환경 주거단지조성을 위한 소음저감 대책방안)

  • 김흥식;주문기;주시웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.535-541
    • /
    • 2004
  • For housing estate of a new administrative capital city, Noise reduction method is a important design factor. As measuring a noise level of traffic noise according to separation from road, it can be created a quite housing estate. Analyzing of merits and demerits in sound barrier walls and tunnels can be proposed environment friendly soundproofing facilities. Number of measurement was performed to know what kind of layout of housing estate is good for noise reduction. Through this measurement, ㄷ shaped layout or parallel layout has the advantage of sound insulation rather than right angled layout. In this case (ㄷ shaped layout or parallel layout) buildings neighboring to the road should be designed to insulate sound. Evergreen trees should be planted between housing estate and road more than 30m (at least 7~8m) in order to reduce noise and have masking effects. If broad-leaved trees are planted more than 30m, approximately 10dB noise is reduced and 2~4dB if 7~8m. Roads in the estate should be designed considering pedestrians first, and special roads for moving and ambulance should be designed as skew road, if possible. The result shows that 15$^{\circ}$-sloped‘S’road reduces 1~2dB noise and 30$^{\circ}$-sloped road reduces 4~7dB. If noise barrier is inevitably installed, it should be designed to go well wit neighboring environment so as to install Environment Friendly Noise Barrier using materials and trees including wood and soil. Through this study the results are used to guideline for construction of environment friendly housing estate

  • PDF

Effects of Ground Strength Increase using Polysaccharide Environmentally Friendly Soil Stabilizer (다당류 친환경 지반개량재를 이용한 지반강도 증대 효과)

  • Kim, Suntae;Do, Jongnam;Jo, Hyunsoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.13-21
    • /
    • 2011
  • To recover basic functions of river such as water control, irrigation, environment, culture, a national river improvement project, the four river restoration projects were currently planned and under construction in Korea. This project is designed to preserve cultural assets and ecosystem from flooding, for that reason, environmentally friendly materials of construction are strongly emphasized. In this study, the soil and cement admixtures are developed. And, the compaction test and the unconfined compressive strength test to evaluate applicability of probiotics as environmentally friendly materials are conducted the soil and cement admixtures. As a result, the probiotic culture was not active in completely dried specimen to obtain accurate mixing proportion. It indicates that the probiotics cannot influence on the development the soil and cement admixtures. A further research will focus on the effect of response between polysaccharide environmentally friendly soil stabilizer and natural specimen.