• Title/Summary/Keyword: environment pacific oyster

Search Result 15, Processing Time 0.031 seconds

Long-term Change and Factors Affecting the Fatness of the Pacific Oyster Crassostrea gigas in Tongyeong-Geoje Bays, Korea (통영-거제해역 수하연 양식 참굴(Crassostrea gigas)의 비만도 장기변화와 영향 요인 고찰)

  • Shim, JeongHee;Lee, Sang Jun;Koo, Jun-Ho;Jeong, Rae Hong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.434-444
    • /
    • 2021
  • The decrease in fatness of the Pacific oyster Crassostrea gigas, which consequently results in decrease in the profit of aquaculture industry, has become a source of serious concern in southeast coast of Korea. The ratio of flesh (edible portion) to total oyster weight, commonly called edible portion yield ("suyul" in Korean), have been used as a fatness index for the healthy and valuable state of oyster from the early stage of oyster farming in Korea. More than 360 data sets were collected from early culturing periods (in the 1970s) to the present from approximately 15 published literatures to evaluate the long-term fatness trend of oyster, reared particularly in submerged longline culturing system in Gyeongsangnam-do province. Slight decrease in oyster fatness during the 1970s to 1990s was detected in Tongyeong and Geoje Bays; however, from the 1990s to the present, clear decreasing trends were observed with a decrease of 0.04-0.08% year-1, especially during harvest season. Oyster mass production per unit area almost doubled within a short period in the early 2000s; however, changes in coastal environment factors inhibited the fattening of shellfish from the mid 1990s. These results indicate that the severe competition in feeding and low biological production in water column might be some convincing reasons for the decrease in fatness of oyster from the 1990s, in Tongyeong and Geoje Bays, Korea.

Osmoregulation and mRNA Expression of a Heat Shock Protein 68 and Glucose-regulated Protein 78 in the Pacific oyster Crassostrea gigas in Response to Salinity Changes

  • Jo, Pil-Gue;Choi, Yong-Ki;An, Kwang-Wook;Choi, Cheol-Young
    • Journal of Aquaculture
    • /
    • v.20 no.4
    • /
    • pp.205-211
    • /
    • 2007
  • Stress-inducible proteins may function in part as molecular chaperones, protecting cells from damage due to various stresses and helping to maintain homeostasis. We examined the mRNA expression patterns of a 68-kDa heat shock protein (HSP68) and 78-kDa glucose-regulated protein (GRP78) in relation to physiological changes in Pacific oyster Crassostrea gigas under osmotic stress. Expression of HSP68 and GRP78 mRNA in the gill significantly increased until 48 h in a hypersaline environment (HRE) and 72 h in a hyposaline environment (HOE), and then decreased. Osmolality and the concentrations of $Na^+$, $Cl^-$, and $Ca^{2+}$ in the hemolymph of HRE oysters significantly increased until 72 h (the highest value) and then gradually decreased; in HOE oysters, these values significantly decreased until 72 h (the lowest value), and then increased. These results suggest that osmolality and $Na^+$, $Cl^-$, and $Ca^{2+}$ concentrations were stabilized by HSP68 and GRP78, and indicate that these two stress-induced proteins play an important role in regulating the metabolism and protecting the cells of the Pacific oysters exposed to salinity changes.

Endogenous Rhythm in Oxygen Consumption by the Pacific Oyster Crassostrea gigas (Thunberg)

  • Kim Wan-Soo;Yoon Seong-Jin;Kim Yoon;Kim Sung-Yeon
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.3
    • /
    • pp.191-199
    • /
    • 2002
  • Pacific oysters Crassostrea gigas (Thunberg) were collected on April, 1999 and March­September, 2000 from Goseung Bay along the southern coast of Korea. The oysters tested cp;;ected from a depth of 0.5-2 m in which they cultured by a long line hanging method. The oxygen consumption rates (OCR) of oysters held under constant temperature and darkness (CC), were determined using an automatic intermittent-flow-respirometer (AIFR). Depending on holding periods after oyster collection, the experiments were divided into two groups: Group 7-d (held to ambient temperature for ca. 7 days) and Group 2l-d (held to ambient temperature for ca. 21 days). The OCR for Group 7-d single oyster displayed two peaks every day under CC, while Group 2l-d single oyster showed one peak every day. It is likely that the rhythmic patterns 02.6-12.8 hours) of the OCR in the Group 7-d single oyster may have been influenced by tidal currents at the sampling site. The rhythmic patterns (24.3-24.7 hours) in the Group 2l-d single oyster may have been shifted from two peaks to one peak each day under CC. The present study concludes that the OCR rhythm of wild oysters in nature is governed by two lunar-day clocks (24.8 hours); one driving one peak and the other driving the second peak. When oysters are subjected to the long-term CC conditions, one of the two-clock systems is depressed or only intermittently becomes active. Jpwever. the OCR rhythms by two to three oysters occurred arrhythmic patterns during the experiments and exhibited some evidence of weak rhythmicity of compared to those of a single oyster. It could be partly due to differences group effects.

Bio-Monitoring System Using Shell Valve Movements of Pacific Oyster (Crassostrea gigas) -I. Detecting Abnormal Shell Valve Movements Under Low Salinity Using a Hall Element Sensor (굴(Crassostrea gigas)의 패각운동을 이용한 생물모니터링시스템 연구 -I. 홀 소자를 이용한 저염분하에서 비정상적인 패각운동 측정)

  • Oh, Seok Jin;Lee, Jun-Ho;Kim, Seok-Yun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.138-142
    • /
    • 2013
  • As an early warning system to reduce the damage of aquacultured mollusks due to low salinity water, we investigated the possibility of a biomonitoring system measuring the shell valve movement (SVM) of Pacific oyster (Crassostrea gigas) by using the Hall element sensor. In high salinity water of 27 psu, SVMs of Pacific oyster showed spikes which mean a relatively fast closing condition after opened condition of average 10-15 mm, and then the SVM showed back to opening condition slower than closing speed. In water salinity of 20-27 psu, the SVMs were similar to that of 27 psu. However, below 17 psu, it showed abnormal valve movements such as spending more time for shell closure. In 10 psu, we could not detected SVMs due to closed condition during experiment periods. Thus, if we quickly detect abnormal environmental variations like low salinity using bio-monitoring of SVM, it may be contribute to increased productivity by dramatically reducing damages in aquaculture.

Development of Genetic Markers for Triploid Verification of the Pacific Oyster, Crassostrea gigas

  • Kang, Jung-Ha;Lim, Hyun Jeong;Kang, Hyun-Soek;Lee, Jung-Mee;Baby, Sumy;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.916-920
    • /
    • 2013
  • The triploid Pacific oyster, which is produced by mating tetraploid and diploid oysters, is favored by the aquaculture industry because of its better flavor and firmer texture, particularly during the summer. However, tetraploid oyster production is not feasible in all oysters; the development of tetraploid oysters is ongoing in some oyster species. Thus, a method for ploidy verification is necessary for this endeavor, in addition to ploidy verification in aquaculture farms and in the natural environment. In this study, a method for ploidy verification of triploid and diploid oysters was developed using multiplex polymerase chain reaction (PCR) panels containing primers for molecular microsatellite markers. Two microsatellite multiplex PCR panels consisting of three markers each were developed using previously developed microsatellite markers that were optimized for performance. Both panels were able to verify the ploidy levels of 30 triploid oysters with 100% accuracy, illustrating the utility of microsatellite markers as a tool for verifying the ploidy of individual oysters.

Regional Variations in Pacific Oyster, Crassostrea gigas Growth and the Number of Larvae Occurrence and Spat Settlement along the West Coast, Korea (서해 지역별 굴 Crassostrea gigas 성장 특성, 유생 출현량 및 채묘율)

  • Lim, Hyun Jeong;Back, Sang Ho;Lim, Mae Soon;Choi, Eun Hee;Kim, Su Kyoung
    • The Korean Journal of Malacology
    • /
    • v.28 no.3
    • /
    • pp.259-267
    • /
    • 2012
  • Due to the oil spill incident in December 2007, every facility of oyster culture was removed in western coast especially in Taean and Seosan. To restore oyster resources in Taean and Seosan, we brought oyster seeds from southern area and monitored their growth. In addition we monitored the culture environment throughout the year, and observed the number of oyster larvae and attached spats on collectors during summer. The factors of water environment were appropriate for oyster culture in both study area. The growth of shell height was larger in Uihang-ri, Taean than Jungwang-ri, Seosan. Spawning was more intensive in a short time in Jungwang-ri, Seosan than Uihang-ri, Taean. The number of oyster larvae and spats of collectors were much more in Jungwang-ri, Seosan than Uihang-ri, Taean. This study showed that transplantation of healthy oyster seeds from southern area can be a way of restoration of oyster resources in western coast. In addition, systematic approaches are necessary by building a better understanding of regional characteristics to restore and enlarge the oyster culture farms in western coast. In summary Uihang-ri, Taean will be appropriate for cultivation farms and Jungwang-ri, Seosan for seedling grounds to increase oyster culture productivity.

Tributyltin Compound in Sediments and Tissues of Oysters and Rock Shell in Gwangyang Bay, Korea

  • Shim, Won-Joon;Yim, Un-Hyuk;Kim, Nam-Sook;Hong, Sang-Hee;Oh, Jae-Ryoung
    • Korean Journal of Environmental Biology
    • /
    • v.22
    • /
    • pp.63-70
    • /
    • 2004
  • Tributyltin (TBT) and its degradation products, dibutyltin (DBT) and monobutyltin (MBT) were quantitatively determined in surface sediments and two molluscan species, Pacific oyster (Crassostrea gigas) and rock shell (Thais ctavigera), from Gwangyang Bay, Korea. Butyltin compounds were detectable in almost all sediment and biota samples. Tributyltin concentrations in surface sediment ranged<2∼33 ng g$\^$-1/, which is at a lower end of TBT concentrations in industrialized bays in Korea. However, TBT levels in sediments were related to boating activities around the bay. In biota samples, TBT concentrations were in the range of 178∼2,458 ng g$\^$-1/ toy oyster and 47∼236 ng g$\^$-1/ for rock shell. Relatively high TBT concentrations in biota were found near wharves for fisherboats and harbor areas. About 90∼100% of the female T. clavigera displayed imposex, and relative penis length index of the imposexed-female was in the range of 20.9∼107.9%. Furthermore, TBT body residue had a significant positive relationship with degree of imposex in T. clavigera. Overall, TBT concentrations in Gwanyang Bay were much lower than other major bays in Korea.

Molecular Cloning and mRNA Expression of Cytochrome P450 (CYP450)-related Protein in the Pacific Oyster, Crassostrea gigas: A Water Temperature and Time Study

  • Jo, Pil-Gue;Min, Tae-Sun;An, Kwang-Wook;Choi, Cheol-Young
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.447-452
    • /
    • 2009
  • We cloned the complete complementary DNA (cDNA) of a Pacific oyster (Crassostrea gigas) cytochrome P450 (CYP450)-related protein using rapid amplification of cDNA ends (RACE). The cDNA included a 1470 bp open reading frame that began with the first ATG codon at position 103 bp and ended with a TAG stop codon at position 1573 bp (GenBank accession EF451959). The sequence had all major functional domains and characteristics of previously characterized CYP450 molecules, including the heme-binding region (FGVGRRRCVG) and putative arginine codon (R) integral to enzymatic function. An NCBI/GenBank database comparison to other CYP450 genes revealed that the deduced C. gigas CYP450 amino acid sequence is similar to that of mouse (Mus musculus) CYP450 2D/II (28%, accession AK078880), rabbit (Oryctolagus cuniculus) CYP450 2D/II (28%, AB008785), and white-tufted-ear marmoset (Callithrix jacchus) CYP450 2D (28%, AY082602). Thus, although the C. gigas CYP450 we cloned appears to belong to the 2D type of the CYP450 group, it has low similarity to this type. CYP450 mRNA expression increased over 6 h in C. gigas gills at $30^{\circ}C$ and $10^{\circ}C$, and then decreased, indicating that CYP450 plays an important role in C. gigas exposed to water temperature changes. This finding can be used as a physiological index for Pacific oysters exposed to changing water temperatures.

Shell Valve Movement of Pacific Oysters, Crassostrea gigas, in Response to Low Salinity Water (저염수에서 이매패류 참굴(Crassostrea gigas)의 패각운동)

  • Moon, Suyeon;Oh, Seok Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.684-689
    • /
    • 2017
  • We examined the possibility of developing an early monitoring system using the shell valve movement activity of Pacific oyster (Crassostrea gigas) for early detection of low salinity water in coastal areas. At salinity levels of 30 psu and 20 psu, SVMs were detected $7.32{\pm}3.21times/hr$ and $7.11{\pm}3.90times/hr$, respectively, The patterns and times of SVMs were not significantly different between the two experiment phases. However, at 10 psu and 5 psu, shell valves were observed to be permanently closed in all experiments. Under combined condition (Group 1: temperature $15^{\circ}C$ ${\times}$ salinity 15 psu), SVMs were observed from 20 psu to 30 psu over a 2 - 3 hr period, and then remained closed. In Group 2 (temperature $30^{\circ}C$ ${\times}$ salinity 15 psu), SVMs were observed, which indicated that the physiological condition of the oysters reached a critical point. Thus, it may be possible to utilize SVMs as an early warning signal for low salinity water.

Properties of Two Cellular Biomarker Parameters in the Blood of Farmed Pacific Oyster, Crassostrea gigas, Exposed to Polychlorinated Biphenyls

  • Choy Eun Jung;Jo Qtae;Do Jeong Wan;Kim Sang Soo;Jee Young-Ju;Min Kwang Sik
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.2
    • /
    • pp.74-80
    • /
    • 2003
  • Two cellular biomarker parameters of the farmed Pacific oyster Crassostrea gigas were studied in vivo and in vitro after exposure to concentrations of polychlorinated biphenyls in terms of neural red uptake (NRU) and lysozyme activity. The oysters exposed in vivo to the xenobiotic concentrations, 0, 30, 90, and 180 ng/g for 14 days, enhanced hemocyte NRU with occasional significant differences (P<0.05), depending on the chemical concentration and duration. An adverse tendency was manifest in the lysozyme activities both in the hemocyte and serum of the oyster treated with the chemical in a same manner, rendering these two cellular parameters as biomarker candidates against the chemical. The oysters exposed in vitro to the chemical concentrations, 0, 1, 5, 10, 100, 1,000, and 10,000 ng/g for 24 hrs at $10^{\circ}C$ showed a similar tendancy as those exposed in vivo to the chemical. Unlike in vivo response, however, the in vitro NRU was first influenced by very low concentration of the chemical. In in vitro results, marked but not significant increase of hemocyte NRU was noticed at the chemical concentration of 5 ng/g, where the value was almost as high as those exposed to higher chemical concentrations, up to 10,000 ng/g. An unusual result was observed in the in vitro lysozyme activity of hemocyte in which significant decrease was first noticed at the chemical concentration of 100 ng/g.