Browse > Article

Osmoregulation and mRNA Expression of a Heat Shock Protein 68 and Glucose-regulated Protein 78 in the Pacific oyster Crassostrea gigas in Response to Salinity Changes  

Jo, Pil-Gue (Division of Marine Environment and Bioscience, Korea Maritime University)
Choi, Yong-Ki (Division of Marine Environment and Bioscience, Korea Maritime University)
An, Kwang-Wook (Division of Marine Environment and Bioscience, Korea Maritime University)
Choi, Cheol-Young (Division of Marine Environment and Bioscience, Korea Maritime University)
Publication Information
Journal of Aquaculture / v.20, no.4, 2007 , pp. 205-211 More about this Journal
Abstract
Stress-inducible proteins may function in part as molecular chaperones, protecting cells from damage due to various stresses and helping to maintain homeostasis. We examined the mRNA expression patterns of a 68-kDa heat shock protein (HSP68) and 78-kDa glucose-regulated protein (GRP78) in relation to physiological changes in Pacific oyster Crassostrea gigas under osmotic stress. Expression of HSP68 and GRP78 mRNA in the gill significantly increased until 48 h in a hypersaline environment (HRE) and 72 h in a hyposaline environment (HOE), and then decreased. Osmolality and the concentrations of $Na^+$, $Cl^-$, and $Ca^{2+}$ in the hemolymph of HRE oysters significantly increased until 72 h (the highest value) and then gradually decreased; in HOE oysters, these values significantly decreased until 72 h (the lowest value), and then increased. These results suggest that osmolality and $Na^+$, $Cl^-$, and $Ca^{2+}$ concentrations were stabilized by HSP68 and GRP78, and indicate that these two stress-induced proteins play an important role in regulating the metabolism and protecting the cells of the Pacific oysters exposed to salinity changes.
Keywords
Pacific oyster; Crassostrea gigas; HSP68; GRP78; Salinity change; Osmolality;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bond, H., M. J. Winter, J. M. Warne, C. R. McCrohan and R. J. Balment, 2002. Plasma concentrations of arginine vasotocin and urotensin II are reduced following transfer of the euryhaline flounder (Platichthys flesus) from seawater to fresh water. Gen. Comp. Endocrinol., 125, 113-120   DOI   ScienceOn
2 Forsyth, R. B., E. P. M. Candido, S. L. Babich and G. K. Iwama, 1997. Stress protein expression in Coho salmon with bacterial kidney disease. J. Aquat. Anim. Health, 9, 18-25   DOI   ScienceOn
3 Hosoi M., S. Kubota, M. Toyohara, H. Toyohara and I. Hayashi, 2003. Effect of salinity change on free amino acid content in Pacific oyster. Fish. Sci., 69, 395-400   DOI   ScienceOn
4 Little, E., M. Ramakrishnan, B. Roy, G. Gazit and A. S. Lee, 1994. The glucose regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit. Rev. Eukar. Gene Exp., 4, 1-18   DOI   ScienceOn
5 Morimoto, R. I., 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones and negative regulators. Genes Dev., 12, 3788-3796   DOI   ScienceOn
6 Navarro, J. M., G. E. Leiva, G. Martinez and C. Anguilera, 2000. Interactive effects of diet and temperature on the scope for growth of the scallop Argopectin purpuratus during reproductive conditioning. J. Exp. Mar. Biol. Ecol., 147, 67-83
7 Werner, I. and D. E. Hinton, 1999. Field validation of hsp 70 stress proteins as biomarkers in Asian clam (Potamocorbula amurensis): is downregulation an indicator of stress? Biomarkers, 4(6), 473-484   DOI
8 Mills, D., 2000. Combined effects of temperature and algal concentration on survival, growth and feeding physiology of Pinctada maxima (Jameson) spat. J. Shellfish Res., 19, 159-166
9 Piano, A., S. Franzellitti, F. Tinti and E. Fabbri, 2005. Sequencing and expression pattern of inducible heat shock gene products in the European flat oyster, Ostrea edulis. Gene, 361, 119-126   DOI   ScienceOn
10 Sanders, B. M., 1993. Stress proteins in aquatic organisms: an environmental perspective. Crit. Rev. Toxicol., 23, 49-75   DOI
11 Beckmann, R. P., L. E. Mizzen and W. J. Welch, 1990. Interaction of HSP70 with newly synthesized proteins: implications for protein folding and assembly. Science, 248, 850-854   DOI
12 Dimock, R. V., Jr., 1967. An examination of physiological variation in the American oyster, Crassostrea virginica. Masters thesis, Florida State University, Gainesville, FL, 63 pp
13 Somero, G. N. and R. D. Bowlus, 1983. Osmolytes and metabolic end products of molluscs: the design of compatible solute systems. Biochem. Physiol., 2. (in) P. W. Hochachka (ed.), Environmental Biochemistry and Physiology, The Mollusca, Vol. 2, London: Academic Press, pp. 77–100
14 Loosanoff, V. L., 1953. Behavior of oyster in water of low salinities. Proc. Natl. Shellfish. Assoc., 43, 135-151
15 Little, E., G. Tocco, M. Baudry, A. S. Lee and S. S. Schreiber, 1996. Induction of glucose-regulated protein (glucose-regulated protein 78/Bip and glucose-regulated protein 94) and heat shock protein 70 transcripts in the immature rat brain following status epilepticus. Neuroscience, 75, 209-219   DOI   ScienceOn
16 Ackerman, P. A. and G. K. Iwama, 2001. Physiological and cellular stress responses of juvenile rainbow trout to vibriosis. J. Aquat. Anim. Health, 13, 173-180   DOI   ScienceOn
17 Craven, R. A., J. R. Tyson and C. J. Stirling, 1997. A novel subfamily of HSP70s in the endoplasmic reticulum. Trends Cell Biol., 7, 277-282   DOI   ScienceOn
18 Ciavarra, R. and A. Simeone, 1990. T lymphocyte stress response. Cell Immunol., 129, 363-367   DOI   ScienceOn
19 Iwama, G. K., P. T. Thomas, R. B. Forsyth and M. M. Vijayan, 1998. Heat shock protein expression in fish. Rev. Fish Biol. Fish., 8, 35-56   DOI   ScienceOn
20 Iwama, G. K., M. M. Vijayan, R. B. Forsyth and P. A. Ackerman, 1999. Heat shock proteins and physiological stress in fish. Am. Zool., 39, 901-909   DOI
21 Werner, I., 2004. The influence of salinity on the heat-shock protein response of Potamocorbula amurensis (Bivalvia). Mar. Environ. Res., 58, 803-807   DOI   ScienceOn
22 Mazzarella, R. A. and M. Green, 1987. ERp99, an abundant, conserved glycoprotein of the endoplasmic reticulum is homologous to the 90 kDa heat shock protein (hsp90) and the 94 kDa glucose regulated protein (GRP94). J. Biol. Chem., 262, 8875-8883
23 Lee K. M., T. Kaneko, F. Katoh and K. Aida, 2006. Prolactin gene expression and gill chloride cell activity in fugu Takifugu rubripes exposed to a hypoosmotic environment. Gen. Comp. Endocrinol., 149, 285-293   DOI   ScienceOn
24 Cheng, T. C., 1981. Bivalves. (in) N. A. Ratcliffe and A. F. Rowley (eds.), Invertebrate Blood Cell. Academic Press, London, pp. 233-299
25 Gagnaire, B., H. Frouin, K. Moreau, H. Thomas-Guyon and T. Renault, 2006. Effect of temperature and salinity on haemocyte activities of the Pacific oyster, Crassostrea gigas (Thunberg). Fish Shellfish Immunol., 10, 387-391   DOI   ScienceOn
26 Hightower, L. E., 1991. Heat shock, stress proteins, chaperones and proteotoxicity. Cell, 66, 191-197   DOI   ScienceOn
27 Hendershot, L. M., J. Ting and A. S. Lee, 1988. Identity of the Immunoglobulin heavy chain binding protein with the 78,000 dalton glucose-regulated protein and the role of post-transcriptional modifications in its binding function. Mol. Cell. Biol., 8, 4250-4256   DOI
28 Morgan, J. D. and G. K. Iwama, 1991. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow trout and steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci., 48, 2083-2094   DOI
29 Yokoyama, Y., H. Hashimoto, S. Kubota, A. Kuriyama, Y. Ogura, S. Mizuta, R. Yoshnaka and H. Toyohara, 2006. cDNA cloning of Japanese oyster stress protein homologous to the mammalian 78-kDa glucose regulated protein and its induction by heat shock. Fish. Sci., 72, 402-409   DOI   ScienceOn
30 Choi, C. Y., B. H. Min, P. G. Jo and Y. J. Chang, 2007. Molecular cloning of PEPCK and stress response of black porgy (Acanthopagrus schlegeli) to increased temperature in freshwater and seawater. Gen. Comp. Endocrinol., 152, 47-53   DOI   ScienceOn
31 Teh, S. J., S. L. Clark, C. L. Brown, S. N. Luoma and D. E. Hinton, 1999. Enzymatic and histopathologic biomarkers as indicators of contaminant exposure and effect in Asian clam (Potamocorbula amurensis). Biomarkers, 4(6), 497-509   DOI
32 Werner, I. and D. E. Hinton, 2000. Spatial profiles of HSP70 proteins in Asian clam (Potamocorbula amurensis) in Northern San Francisco Bay may be linked to natural rather than anthropogenic stressors. Mar. Environ. Res., 50(1-5), 379-384   DOI   ScienceOn
33 Lee, A. S., 1987. Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem. Sci., 12, 20-23   DOI   ScienceOn
34 Bukau, B. and A. L. Horwich, 1998. The hsp70 and hsp60 chaperone machines. Cell, 92, 351-366   DOI   ScienceOn
35 Hartl, F. U., 1996. Molecular chaperones in cellular protein folding. Nature, 381, 571-580   DOI   ScienceOn
36 Chang, Y. J., B. H. Min and C. Y. Choi, 2007. Black porgy (Acanthopagrus schlegeli) prolactin cDNA sequence: mRNA expression and blood physiological responses during freshwater acclimation. Comp. Biochem. Physiol., 147, 112-128   DOI   ScienceOn
37 Schlesinger, M. J., M. Ashburner and A. Tissieres, 1992. Heat Shock from Bacteria to Man. Cold Spring Harbor, NY: Cold Spring Harbor Press, pp. 131-137
38 Craig, E. A., J. S. Weissman and A. L. Horwich, 1994. Heat shock proteins and molecular chaperones: mediators, protein conformation and turnover in the cell. Cell, 78, 365-372   DOI   ScienceOn