• Title/Summary/Keyword: entropy method

Search Result 872, Processing Time 0.032 seconds

Crack identification with parametric optimization of entropy & wavelet transformation

  • Wimarshana, Buddhi;Wu, Nan;Wu, Christine
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.33-52
    • /
    • 2017
  • A cantilever beam with a breathing crack is studied to improve the breathing crack identification sensitivity by the parametric optimization of sample entropy and wavelet transformation. Crack breathing is a special bi-linear phenomenon experienced by fatigue cracks which are under dynamic loadings. Entropy is a measure, which can quantify the complexity or irregularity in system dynamics, and hence employed to quantify the bi-linearity/irregularity of the vibration response, which is induced by the breathing phenomenon of a fatigue crack. To improve the sensitivity of entropy measurement for crack identification, wavelet transformation is merged with entropy. The crack identification is studied under different sinusoidal excitation frequencies of the cantilever beam. It is found that, for the excitation frequencies close to the first modal frequency of the beam structure, the method is capable of detecting only 22% of the crack depth percentage ratio with respect to the thickness of the beam. Using parametric optimization of sample entropy and wavelet transformation, this crack identification sensitivity is improved up to 8%. The experimental studies are carried out, and experimental results successfully validate the numerical parametric optimization process.

Numerical Study of Entropy Generation with Nonlinear Thermal Radiation on Magnetohydrodynamics non-Newtonian Nanofluid Through a Porous Shrinking Sheet

  • Bhatti, M.M.;Abbas, T.;Rashidi, M.M.
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.468-475
    • /
    • 2016
  • In this article, entropy generation on MHD Williamson nanofluid over a porous shrinking sheet has been analyzed. Nonlinear thermal radiation and chemical reaction effects are also taken into account with the help of energy and concentration equation. The fluid is electrically conducting by an external applied magnetic field while the induced magnetic field is assumed to be negligible due to small magnetic Reynolds number. The governing equations are first converted into the dimensionless expression with the help of similarity transformation variables. The solution of the highly nonlinear coupled ordinary differential equation has been obtained with the combination of Successive linearization method (SLM) and Chebyshev spectral collocation method. Influence of all the emerging parameters on entropy profile, temperature profile and concentration profile are plotted and discussed. Nusselt number and Sherwood number are also computed and analyzed. It is observed that entropy profile increases for all the physical parameters. Moreover, it is found that when the fluid depicts non-Newtonian (Williamson fluid) behavior then it causes reduction in the velocity of fluid, however, non-Newtonian behavior enhances the temperature and nanoparticle concentration profile.

Robust Voice Activity Detection in Noisy Environment Using Entropy and Harmonics Detection (엔트로피와 하모닉 검출을 이용한 잡음환경에 강인한 음성검출)

  • Choi, Gab-Keun;Kim, Soon-Hyob
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.169-174
    • /
    • 2010
  • This paper explains end-point detection method for better speech recognition rates. The proposed method determines speech and non-speech region with the entropy and the harmonic detection of speech. The end-point detection using entropy on the speech spectral energy has good performance at the high SNR(SNR 15dB) environments. At the low SNR environment(SNR 0dB), however, the threshold level of speech and noise varies, so the precise end-point detection is difficult. Therefore, this paper introduces the end-point detection methods which uses speech spectral entropy and harmonics. Experiment shows better performance than the conventional entropy methods.

Context-Based Minimum MSE Prediction and Entropy Coding for Lossless Image Coding

  • Musik-Kwon;Kim, Hyo-Joon;Kim, Jeong-Kwon;Kim, Jong-Hyo;Lee, Choong-Woong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.83-88
    • /
    • 1999
  • In this paper, a novel gray-scale lossless image coder combining context-based minimum mean squared error (MMSE) prediction and entropy coding is proposed. To obtain context of prediction, this paper first defines directional difference according to sharpness of edge and gradients of localities of image data. Classification of 4 directional differences forms“geometry context”model which characterizes two-dimensional general image behaviors such as directional edge region, smooth region or texture. Based on this context model, adaptive DPCM prediction coefficients are calculated in MMSE sense and the prediction is performed. The MMSE method on context-by-context basis is more in accord with minimum entropy condition, which is one of the major objectives of the predictive coding. In entropy coding stage, context modeling method also gives useful performance. To reduce the statistical redundancy of the residual image, many contexts are preset to take full advantage of conditional probability in entropy coding and merged into small number of context in efficient way for complexity reduction. The proposed lossless coding scheme slightly outperforms the CALIC, which is the state-of-the-art, in compression ratio.

A study on the estimation of potential yield for Korean west coast fisheries using the holistic production method (HPM) (통합생산량분석법에 의한 한국 서해 어획대상 잠재생산량 추정 연구)

  • KIM, Hyun-A;SEO, Yong-Il;CHA, Hyung Kee;KANG, Hee-Joong;ZHANG, Chang-Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.1
    • /
    • pp.38-53
    • /
    • 2018
  • The purpose of this study is to estimate potential yield (PY) for Korean west coast fisheries using the holistic production method (HPM). HPM involves the use of surplus production models to apply input data of catch and standardized fishing efforts. HPM compared the estimated parameters of the surplus production from four different models: the Fox model, CYP model, ASPIC model, and maximum entropy model. The PY estimates ranged from 174,232 metric tons (mt) using the CYP model to 238,088 mt using the maximum entropy model. The highest coefficient of determination ($R^2$), the lowest root mean square error (RMSE), and the lowest Theil's U statistic (U) for Korean west coast fisheries were obtained from the maximum entropy model. The maximum entropy model showed relatively better fits of data, indicating that the maximum entropy model is statistically more stable and accurate than other models. The estimate from the maximum entropy model is regarded as a more reasonable estimate of PY. The quality of input data should be improved for the future study of PY to obtain more reliable estimates.

Histogram Bin Number Selection Method Robust to the Variations of Channel Occupancy for Cross Entropy (크로스 엔트로피 기반 스펙트럼 센싱에서 채널 점유 시간 변화에 따른 히스토그램 Bin 개수 선택 기법)

  • Yong, Seulbaro;Jang, Sung-Jeen;Kim, Jae-Moung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.88-97
    • /
    • 2013
  • Most of the traditional spectrum sensing methods consider only the current detected data sets of Primary User (PU). However previous state of PU is a kind of conditional probability that strengthens the reliability of the detector. Therefore, in the cross entropy spectrum sensing method, relationship of the previous and current spectrum sensing is considered to detect PU signal more effectively. But these cross entropy spectrum sensing methods only consider the ideal system. In other words, PU always occupy the channel during the same period. However, PU can occupy the channel either for a longer or a shorter period than the ideal case in the real system. For this reason, the spectrum sensing performance can be varied. In this paper, we propose the method that can maintain the performance of spectrum sensing in the real system and we confirm the results with the help of simulation.

A Study on the Realization of Wireless Home Network System Using High-performance Speech Recognition in Variable Position (가변위치 고음성인식 기술을 이용한 무선 홈 네트워크 시스템 구현에 관한 연구)

  • Yoon, Jun-Chul;Choi, Sang-Bang;Park, Chan-Sub;Kim, Se-Yong;Kim, Ki-Man;Kang, Suk-Youb
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.991-998
    • /
    • 2010
  • In realization of wireless home network system using speech recognition in indoor voice recognition environment, background noise and reverberation are two main causes of digression in voice recognition system. In this study, the home network system resistant to reverberation and background noise using voice section detection method based on spectral entropy in indoor recognition environment is to be realized. Spectral subtraction can reduce the effect of reverberation and remove noise independent from voice signal by eliminating signal distorted by reverberation in spectrum. For effective spectral subtraction, the correct separation of voice section and silent section should be accompanied and for this, improvement of performance needs to be done, applying to voice section detection method based on entropy. In this study, experimental and indoor environment testing is carried out to figure out command recognition rate in indoor recognition environment. The test result shows that command recognition rate improved in static environment and reverberant room condition, using voice section detection method based on spectral entropy.

Influence of Correlation Functions on Maximum Entropy Experimental Design (최대엔트로피 실험계획에서 상관함수의 영향)

  • Lee Tae-Hee;Kim Seung-Won;Jung Jae-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.787-793
    • /
    • 2006
  • Recently kriging model has been widely used in the DACE (Design and Analysis of Computer Experiment) because of prominent predictability of nonlinear response. Since DACE has no random or measurement errors contrast to physical experiment, space filling experimental design that distributes uniformly design points over whole design space should be employed as a sampling method. In this paper, we examine the maximum entropy experimental design that reveals the space filling strategy in which defines the maximum entropy based on Gaussian or exponential. The influence of these two correlation functions on space filling design and their model parameters are investigated. Based on the exploration of numerous numerical tests, enhanced maximum entropy design based on exponential correlation function is suggested.

Entropy-based Correlation Clustering for Wireless Sensor Networks in Multi-Correlated Regional Environments

  • Nga, Nguyen Thi Thanh;Khanh, Nguyen Kim;Hong, Son Ngo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.85-93
    • /
    • 2016
  • The existence of correlation characteristics brings significant potential advantages to the development of efficient routing protocols in wireless sensor networks. This research proposes a new simple method of clustering sensor nodes into correlation groups in multiple-correlation areas. At first, the evaluation of joint entropy for multiple-sensed data is considered. Based on the evaluation, the definition of correlation region, based on entropy theory, is proposed. Following that, a correlation clustering scheme with less computation is developed. The results are validated with a real data set.