• Title/Summary/Keyword: entrance length

Search Result 204, Processing Time 0.021 seconds

Numerical Study on the Thermal Entrance Effect in Miniature Thermal Conductivity Detectors (소형 Thermal Conductivity Detector의 입구열전달 거동에 대한 수치해석)

  • Kim, U-Seung;Kim, Yeong-Min;Chen, Kuan;Cheon, Won-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.439-447
    • /
    • 2002
  • The microchannel flow in miniature TCDs (thermal conductivity detectors) is investigated numerically. The solutions based on the boundary layer approximation are not very accurate in the region of the duct inlet for low Reynolds numbers. In this study, two-dimensional Navier-Stokes equations are considered to analyze the gas flow in a miniature TCD. Effects of channel size, inlet and boundary conditions on the heat transfer rate are examined. When the gas stream is not preheated, the distances for a miniature TCD to reach the conduction-dominant region for duct flow are found to be approximately two and three times the thermal entry length for duct flow with constant properties, respectively, leer constant wall temperature and constant wall heat flux boundary conditions. If the gas temperature at the channel inlet is close to the mean gas temperature in the conduction-dominant region, the entrance region is much shorter compared to other cases considered in this study.

A study on tunnel entry design considering the booming noise resulting from micro-pressure wave (미기압파에 의한 터널출구소음저감을 위한 고속철도 터널형상개선에 관한 연구)

  • 목재균;최강윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.627-635
    • /
    • 1997
  • In general, the booming noise intensity at tunnel exit is strongly related to the gradient of the compression wave front created by high speed train entering the tunnel. This paper presents some results in relation with the compression wave front produced when the high speed train enters a tunnel. Four kinds of tunnel entrance shape with real dimensions were studied to investigate the formation of compression wave front inside tunnel by train entering tunnel. Computations were carried out using three-dimensional compressible Euler equation with vanishing viscosity and conductivity of fluid. According to the reslts, the flow disturbance occured at tunnel entrance were eliminated by tunnel hood with same cross sectional area. The compression wave front is formed completely at 30-40m from tunnel entrance. The maximum pressure gradient of compression wave front is reduced by 29.8% for the inclined tunnel hood and reduced by 21.5% for the tunnel hood with holes at the top face with tunnel without hood. The length of the inclined hood is 15m and the length of the hood with holes is 20m.

  • PDF

Flow Characteristics of a Turbulent Pulsating Flow in a Straight Duct Connected to a Curved Duct by using an LDV (LDV에 의한 곡관 후류에 연결된 직관에서 난류맥동유동의 유동특성)

  • 손현철;이행남;박길문
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.177-186
    • /
    • 2003
  • In the present study, the flow characteristics of developing turbulent flows are investigated at the exit region of a square cross-sectional 180" curved duct with dimensions of 40mm$\times$40mm$\times$4000mm (height $\times$ width $\times$length). Smoke particles produced from mosquito coils were used as seed particles for the LDV measurement. Experiments were carried out to measure axial velocity profiles, shear stress distributions and entrance lengths by using an LDV system and Rotating Machinery Resolver RMR with PHASE software. Experimental results clearly show that the time-averaged Reynolds number does not affect oscillatory flow characteristics because the turbulent components tend to balance the oscillatory components in the fully developed flow region. Also, the velocity profiles are in good agreement with 1/7power law such as the results of steady turbulent flows. The turbulent intensity linearly increases along the walls and is slightly higher, especially in the period of deceleration. On the other hand, the LDV measurements show that shear stress values in slightly higher in the period of deceleration due to the flow characteristics in the exit region. The entrance length where flows become stable appears at the point that is 40 times the length of hydraulic diameter.eter.

Effects of Physical Parameters and Age on the Order of Entrance of Hynobius leechii to a Breeding Pond

  • Lee, Jung-Hyun;Park, Dae-Sik
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.183-191
    • /
    • 2008
  • To determine the age structure of a Hynobius leechii breeding population and analyze relationships between the order of entrance to breeding ponds and physical parameters and age, we studied a wild population of the species in the Research Forests of Kangwon National University in Chuncheon, Kangwon, South Korea from March 16 to April 13, 2005. The age of breeding males ranged one to nine years old and that of females ranged from three to nine years old. The asymptotic sizes of males and females were 6.36 and 6.51 cm, respectively, and the growth coefficients of males and females were 0.71 and 0.81, respectively. The snout-vent length (SVL), head length, and body mass of males were all positively correlated with their age, but female age did not show a significant relationship with any physical parameter. The tail depth, body mass, and condition factors (SVL/body mass $\times$ 100) of both males and females were negatively related with the order of entrance to the breeding pond. The head width and SVL of males were also negatively correlated with the order of entrance, but the SVL of females was positively related with the order of entrance. These results suggest that physical parameters are more important determinants of breeding migration patterns than age. We discuss which of two hypotheses, the mate opportunity hypothesis and the susceptibility hypothesis, is better able to explain the order of entrance to breeding ponds for male and female H. leechii.

Performance Characteristics Under Non-Reacting Condition with Respect to Length of a Subscale Diffuser for High-Altitude Simulation (고고도 모사를 위한 축소형 디퓨저의 길이변화에 따른 비연소장에서의 성능특성)

  • Jeong, Bonggoo;Kim, Hong Jip;Jeon, Junsu;Ko, Youngsung;Han, Yeoung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.321-328
    • /
    • 2014
  • The performance characteristics of a subscale diffuser under non-reacting conditions for high-altitude simulation were numerically investigated with respect to different lengths of the secondary throat diffuser. The ratio of the length of the diffuser entrance to the nozzle exit diameter was set to 0, 50, and 100%. In addition, flow characteristics were studied for a range of length-to-diameter ratios of the secondary throat diffuser. An insufficient diffuser entrance length caused contraction of the plume immediately after the nozzle exit. When the length-to-diameter ratio was less than 8, a strong Mach disk was formed inside the diffuser, resulting in a sharp increase in pressure. In addition, flow characteristics in the diverging part of the diffuser were investigated for a range of diverging part lengths. A short diverging part may lead to abrupt pressure recovery, resulting in the possible application of mechanical load to the diffuser.

A Study of Spraying Curing Compound for Concrete Pavement Considering Environmental Condition in Tunnel (터널내 환경을 고려한 콘크리트 포장의 양생제 살포기준 연구)

  • Ryu, SungWoo;Kwon, OhSun;Song, GeoRuemSoo;Lee, MinKyung;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.51-57
    • /
    • 2014
  • PURPOSES : This study is to suggest tunnel length to spray curing compound, based on the field tests. METHODS : At first field test, length from the entrance of tunnel to wet wall was checked by visual survey. The second and third test, various sensors were installed in concrete or in tunnel, such as RH sensor, temperature sensor, portable weather station and etc.. And also, test for bleeding and retaining water of concrete were conducted to evaluate environmental effect on concrete pavement. RESULTS : The result of the field experiment for tunnel length to spray curing compound indicates that length changes depending on tunnel length, season, and location. Environmental condition of a short tunnel was not much different between location near entrance and at center of tunnel. However, in case of a medium and long tunnel, effect of outside environmental condition decreased, when location moved into tunnel center of it. CONCLUSIONS : From the testing results, it can be proposed that optimum tunnel length to spray curing compound is 60m for a medium and long tunnel, and whole length for a short tunnel.

A Study on Pressure Distribution, Wall Shear Stress and Friction Factor of Developing Turbulent Pulsating Flows in a Square Duct(Ⅰ), -Experimental Analysis- (정4각단면덕트의 입구영역에서 난류맥동유동의 압력분포, 전단응력분포와 관마찰계수에 관한 연구(Ⅰ), - 실험해석-)

  • Park, Gil-Mun;Cho, Byeong-Gi;Koh, Yeong-Ha;Bong, Tae-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.58-67
    • /
    • 1996
  • In the present study, the pressure distribution, wall shear stress distribution and friction factor of developing turbulent pulsating flows are investigated theoretically and experimentally in the entrance region of a square duct. The pressure distribution for turbulent pulsating flows are in good agreement with the theoretical values. The time-averaged pressure gradients of the turbulent pulsating flows show the same tendency as those of turbulent steady flows as the time-averged Reynolds number $(Re_{ta})$ increase. Mean shear stresses in the turbulent pulsating flow increase more in the inlet flow region than in the fully developed flow region and approach to almost constant value in the fully developed flow region. In the turbulent pulsating flow, the friction factor of the quasi-steady state flow $({\lambda}_{q, tu})$ follow friction factor's law in turbulent steady flow. The entrance length of the turbulent pulsating flow is not influenced by the time-averaged Reynolds number $(Re_{ta})$ and it is about 40 times as large as the hydraulic diameter.

  • PDF

Control of Seiches by Adjustment of Entrance Channel Width (유입수로폭의 조정을 통한 항만부진동 제어)

  • Yong Jun Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.2
    • /
    • pp.57-62
    • /
    • 1997
  • Based on the facts that significant parts of the harbor response spectrum usually reside in the vicinity of the Helmholtz mode in the eastern part of Korea. economically feasible redemption measures of seiches for malfunctioned harbors already in service is proposed by extending the wisdom of perforated breakwaters and adjusting the width of entrance channel as a control tool. It turns out that as the entrance channel is getting narrower, the harbor system is getting slender due to the increase of added hydrodynamic length so that harbor response can be effectively diminished and separated from the incident wave spectrum where considerable amount of wave energy is located at the lower frequency range.

  • PDF

A study on the development of the velocity and temperature fields in a laminar flow through an eccentric annular ducts (偏心된 二重圓管의 環狀部를 지니는 層流流動에서의 連度場 및 溫度場의 確立에 대한 硏究)

  • 이택식;이상산
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.861-869
    • /
    • 1986
  • A numerical study has been conducted on the development of the velocity and temperature fields in a laminar flow through an eccentric annular duct. A bipolar coordinates system is adopted, and a numerical program is developed to analyze 3-dimensional parabolic flow problems. In the analysis of the velocity field, the entrance length has been defined as the distance where the axial pressure gradient is greater than that of the developed velocity field by 5%. The dimensionless hydrodynamic entry length increases with increasing eccentricity. In the transverse flow fields, the reverse flow region along the wall due to the developing axial velocity near the entrance of the duct is found. In the analysis of the temperature field, the thermal entry length has been defined as the axial distance where the mean fluid temperature is 5% less than that of the developed temperature field. The dimensionless thermal entry length increases as eccentricity or Prandtl number increases. The overshoot of the mean Nusselt number over the developed value at the zero-temperature wall is encountered, and the rate of the overshoot increases with the increase of the eccentricity and Prandtl number.

A Numerical Study on Performance Characteristics of a Subscale Diffuser for High-Altitude Simulation (고고도 모사를 위한 축소형 디퓨저의 성능 특성에 대한 수치적 연구)

  • Jeong, Bong-Goo;Yim, Kyung-Jin;Jo, Seong-Hwi;Kim, Hong-Jip;Jeon, Jun-Soo;Ko, Young-Sung;Kim, Seung-Han;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.570-573
    • /
    • 2012
  • Performance characteristics of subscale diffuser for high-altitude simulation have been numerically investigated. The length of diffuser entrance with respect to nozzle exit diameter was changed to 0, 50, 100%, respectively. In addition, flow characteristics have been studied for various length to diameter ratio of secondary throat diffuser. As a result, the shape of plume was contracted for insufficient length of diffuser entrance. Also, if the length to diameter ratio of secondary throat diffuser were less than 7 or 8, mach disk has been formed inside the diffuser.

  • PDF