• Title/Summary/Keyword: entomopathogenic

Search Result 322, Processing Time 0.027 seconds

Temperature Effects on Korean Entomopathogenic Nematodes, Steinernema glaseri and S. longicaudum, and their Symbiotic Bacteria

  • Hang Dao Thi;Choo, Ho-Yul;Lee, Dong-Woon;Lee, Sang-Myeong;Kaya Harry K.;Park, Chung-Gyoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.420-427
    • /
    • 2007
  • We investigated the temperature effects on the virulence, development, reproduction, and otility of two Korean isolates of entomopathogenic nematodes, Steinernema glaseri Dongrae strain and S. longicaudum Nonsan strain. In addition, we studied the growth and virulence of their respective symbiotic bacterium, Xenorhabdus poinarii for S. glaseri and Xenorhabdus sp. for S. longicaudum, in an insect host at different temperatures. Insects infected with the nematode-bacterium complex or the symbiotic bacterium was placed at $13^{\circ}C,\;18^{\circ}C,\;24^{\circ}C,\;30^{\circ}C,\;or\;35^{\circ}C$ in the dark and the various parameters were monitored. Both nematode species caused mortality at all temperatures tested, with higher mortalities occurring at temperatures between $24^{\circ}C\;and\;30^{\circ}C$. However, S. longicaudum was better adapted to cold temperatures and caused higher mortality at $18^{\circ}C$ than S. glaseri. Both nematode species developed to adult at all temperatures, but no progeny production occurred at $13^{\circ}C\;or\;35^{\circ}C$. For S. glaseri, nematode progeny production was best at inocula levels above 20 infective juveniles/host at $24^{\circ}C\;and\;30^{\circ}C$, but for S. longicaudum, progeny production was generally better at $24^{\circ}C$. Steinernema glaseri showed the greatest motility at $30^{\circ}C$, whereas S. longicaudum showed good motility at $24^{\circ}C\;and\;30^{\circ}C$. Both bacterial species grew at all tested temperatures, but Xenorhabdus sp. was more virulent at low temperatures $(13^{\circ}C\;and\;18^{\circ}C)$ than X. poinarii.

Identification of an Entomopathogenic Bacterium, Serratia sp. ANU101, and Its Hemolytic Activity

  • Kim, Yong-Gyun;Kim, Keun-Seob;Seo, Ji-Ae;Shrestha, Sony;Kim, Hosanna-H.;Nalini, Madanagopal;Yi, Young-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.314-322
    • /
    • 2009
  • Four different bacterial colonies were isolated from an old stock of an entomopathogenic nematode, Steinernema monticolum. They all showed entomopathogenicity to final instar larvae of beet armyworm, Spodoptera exigua, by hemocoelic injection. However, they varied in colony form, susceptibility to antibiotics, and postmortem change of the infected host insects. Biolog microbial identification and 16S rDNA sequence analyses indicate that these are four different species classified into different bacterial genera. Owing to high entomopathogenicity and a cadaver color of infected insect host, Serratia sp. was selected as a main symbiotic bacterial species and analyzed for its pathogenicity. Although no virulence of Serratia sp. was detected at oral administration, the bacteria gave significant synergistic pathogenicity to fifth instar S. exigua when it was treated along with a spore-forming entomopathogenic bacterium, Bacillus thuringiensis. The synergistic effect was explained by an immunosuppressive effect of Serratia sp. by its high cytotoxic effect on hemocytes of S. exigua, because Serratia sp. caused septicemia of S. exigua when the bacterial cells were injected into S. exigua hemocoel. The cytotoxic factor(s) was present in the culture medium because the sterilized culture broth possessed high potency in the cytotoxicity, which was specific to granular cells and plasmatocytes, two main immune-associated hemocytes in insects.

Investigation on favorable conditions for mycelial growth of Paecilomyces tenuipes (눈꽃동충하초(Paecilomyces tenuipes)의 균사생장조건 구명)

  • Park, Gi-Beom;Park, Gi-Byung;Shrestha, Bhushan;Sung, Jae-Mo
    • Journal of Mushroom
    • /
    • v.2 no.1
    • /
    • pp.21-27
    • /
    • 2004
  • Distribution and in vitro growth characteristics of entomopathogenic Paecilomyces species were studied based on the specimens and isolates deposited in Entomopathogenic Fungal Culture Collection (EFCC), Kangwon National University, Chuncheon, Korea. Paecilomyces species were frequently collected from different mountains and valleys and were almost distributed uniformly. Collection period of Paecilomyces species ranged from July to September, with most of the collections at the end of September. P. tenuipes was mostly collected one among different Paecilomyces species. The optimum medium for mycelial growth of P. tenuipes was PDA, whereas in other media such as SDAY and HMA also produced similar growth. The optimum temperature and pH levels were $25^{\circ}C$ and 6.0~7.0, respectively. Best carbon and nitrogen sources were dextrose and tryptone, respectively, while $KH_2PO_4$ was the best mineral source for mycelial growth. Highest mycelial growth was observed when the C/N ratio was 20:1.

  • PDF

Influence of Germination Triggers on Control Efficacy of an Entomopathogenic Fungus Beauveria bassiana against Myzus persicae (곤충병원성 곰팡이 Beauveria bassiana 포자 발아촉진제가 복숭아혹진딧물 살충효과에 미치는 영향)

  • Kim, Jeong-Jun;Zhu, Hong;Seok, Soon-Ja;Lee, Sang-Yeob
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.256-258
    • /
    • 2011
  • This study was conducted to investigate agents inducing conidial germination of an entomopathogenic fungus, Beauveria bassiana KK5. Different chemicals including carbohydrates were mixed with conidia of B. bassiana and incubated on water agar for 12 hours. Fructose, mannose and skim milk were useful for spore germination compared to other chemicals. Bioassays against green peach aphids were conducted with the fungal conidia suspended in 1% fructose, mannose and skim milk. Of them, a mixture of skim milk plus conidia of B. bassiana KK5 showed the highest mortalities against $3^{rd}$ instar of green peach aphid.

Biological Control of Aphid Using Fungal Culture and Culture Filtrates of Beauveria bassiana

  • Kim, Jeong Jun;Jeong, Gayoung;Han, Ji Hee;Lee, Sangyeob
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.221-224
    • /
    • 2013
  • Aphids are one of the most destructive pests in crop production such as pepper, cucumber, and eggplants. The importance of entomopathogenic fungi as alternative pest control agents is increasing. Conidia of entomopathogenic fungi are influenced by environmental conditions, such as temperature and relative humidity, and cause slow and fluctuating mortality. These factors have prevented wider application and use of biocontrol agents. For investigation of means of mitigation of such problems, we conducted bioassays with 47 fungal culture filtrates in order to evaluate the potential of secondary metabolites produced by entomopathogenic fungi for use in aphid control. Among 47 culture filtrates cultured potato dextrose broth, filtrate of Beauveria bassiana Bb08 showed the highest mortality (78%) against green peach aphid three days after treatments. Filtrate of Bb08 cultured in Adamek's medium showed higher toxicity as 100% to third instar nymphs of the aphid compared with seven other filtrates cultured in different broths amended with colloidal chitin or oil. The culture filtrates and fungal cultures from media amended with colloidal chitin or oil had lower control efficacies than filtrates without these additives in three different media. These results indicate that the fungal culture fluid or culture filtrate of B. bassiana Bb08 cultured in Adamek's medium has potential for development as a mycopesticide for aphid control.

Purification and Characterization of Protease from Entomopathogenic Fungus Beauveria bassiana (곤충 병원성 곰팡이 Beauveria bassiana로부터 Protease의 정제와 특성)

  • Ko, Hwi-Jin;Kim, Hyun-Kyu;Kim, Beom-Gi;Kang, Sun-Chul;Kwon, Suk-Tae
    • Applied Biological Chemistry
    • /
    • v.40 no.5
    • /
    • pp.388-394
    • /
    • 1997
  • Extracellular protease (bassiasin I), from the culture filtrate of entomopathogenic fungus Beauveria bassiana ATCC7159, was successively purified by precipitation with ammonium sulfate followed by DEAE-Sephadex A-50, CM-cellulose and Hydroxyapatite column chromatography. A typical procedure provided 41-fold purification with 13.6% yield. The molecular weight of the purified pretense (bassiasin I) was found to be approximately 32,000 by SDS-PAGE. Isoelectric-focusing analysis of the enzyme showed a pI of 9.5. $NH_2-terminal$ sequence of the pretense showed homology with those of the fungal proteases. The enzyme has an optimal pH for activity at 10.5 and is stable over pH 5.0-11.0. The maximum activity of the enzyme was at $60-65^{\circ}C$, and approximately 20% activity remained at $60^{\circ}C$ after 120 min. The pretense was inhibited by phenylmethylsulfonyl fluoride (PMSF) and diisopropyl fluorophosphate (DIPF).

  • PDF

Effect of Soil Moisture and Irrigation on Pathogenicity of Entomopathogenic Nematodes (토양수분과 관수량이 곤충병원성선충의 병원성에 미치는 영향)

  • Lee Dong-Woon;Choi Woo-Geun;Lee Sang-Myeong;Kim Hyeong-Hwan;Choo Ho-Yul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.77-85
    • /
    • 2006
  • Entomopathogenic nematodes (EPNs) have been used as biological control agents for control of various agro-forest insect pests, and are especially effective against soil-dwelling insect pests. Effect of soil moisture on pathogenicity of commercial EPNs for white grub control was evaluated in laboratory, pots, and golf courses. Pathogenicity of EPNs in sand column was variable depending on depth, soil moisture, and EPN species or strain. All tested EPNs (Heterorhabditis sp. GSNUH1, Heterorhabditis sp. GSNUH2, Steinernema carpocapsae GSN1, and S. longicaudum Nonsan strain) showed similar pathogenicity against the bait insect, great wax moth (Galleria mellonella) larva at 2 cm deep at a given soil moisture. However, pathogenicity of the Heterorhabditis sp. GSNUH1 strain was decreased with increasing soil moisture. Pathogenicity of S. carpocapsae GSN1 strain was the lowest in 3% soil moisture (v/w) at 7 cm depth. However, there was no difference in pathogenicity between Heterorhabditis sp. GSNUH2 and S. longicaudum Nonsan strain. Although pathogenicity of Heterorhabditis sp. KCTC 0991BP strain showed no difference against the 2nd instar of Exomala orientalis, that of the S. carpocapsae GSN1 strain was decreased in the laboratory depending on soil moisture. Highly pathogenic strain EPN, Heterorhabditis sp. KCTC 0991BP strain, showed higher pathogenicity at 100 mm irrigation than non-irrigation or 10 mm irrigation. However, poor pathogenic strain EPN, S. carpocapsae GSN1 strain, was not different in pathogenicity from the 2nd instar of Exomala orientalis in creeping bentgrass (Agrostis palustris) depending on irrigation amount in the pot. Pathogenicity of EPNs in field experiment at the tee of Ulsan golf club showed a similar trend to that in the pot experiment.

Immunosuppressive Activity of an Entomopathogenic Bacteria, Xenorhabdus ehlersii KSY, and Its Application to Enhance Insecticidal Activity of Bacillus thuringiensis (곤충병원세균(Xenorhabdus ehlersii KSY)의 곤충면역 억제 능력과 이를 이용한 Bacillus thuringiensis 의 살충력 증가 효과)

  • Kim, Hyoil;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.58 no.2
    • /
    • pp.101-109
    • /
    • 2019
  • An entomopathogenic bacterium, Xenorhabdus ehlersii KSY, is symbiotic to a nematode, Steinernema longicaudum, and exhibits high entomopathogenic virulence against lepidopteran insects. This study showed that the bacterial pathogenicity is induced by its inhibitory activity against eicosanoid biosynthesis of target insects, resulting in immunosuppression. To be applied for insect pest control, the bacteria should be infected to insect hemocoel. To deliver X. ehlersii to inset hemocoel, Bacillus thuringiensis (Bt) was mixed with the bacteria to breakdown the physical barrier (= midgut epithelium) from midgut lumen to hemocoel. The bacterial mixture significantly enhanced insecticidal activity of Bt only against larvae of Plutella xylostella and Maruca vitrata. For formulation, X. ehlersii cells were freeze-dried and mixed with sporulated Bt cells. The formulated bacterial mixture was applied to semi-field cultivating cabbage crop infested by P. xylostella. The bacterial mixture treatment showed over 95% control efficacy, while Bt alone gave 80% control efficacy. These results suggest that X. ehlersii can be applied to develop a novel insect control agent.

Characteristics and Virulence Assay of Entomopathogenic Fungus Metarhizium anisopliae for the Microbial Control of Spodoptera exigua (파밤나방의 생물적 방제를 위한 곤충병원성 곰팡이 Metarhizium anisopliae의 특성 및 병원성 검정)

  • Han, Ji Hee;Kim, Hyeonggyeong;Leem, Hun Tae;Kim, Jeong Jun;Lee, SangYeob
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.454-459
    • /
    • 2013
  • Beet armyworm, Spodoptera exigua is difficult to control using chemical insecticides because of the fast development of insecticide resistance. For eco-friendly beet armyworm managements, various control agents are required. Entomopathogenic fungus is one of the promise control agents as an alternative to chemical control agent. We isolated entomopathogenic fungi from soil samples of Yangpyeong, Gyeonggi-do by insect-bait method using Tenebio molitor and conducted bioassay to larva of beet armyworm. The result of bioassay, a selected strain FT83 showed 100% mortality against third instar larva of S. exigua. On the basis of morphological characteristics and analysis of 18srRNA sequence for ITS, the strain FT83 was identified as a Metarhizium anisopliae. The mortality of beet armyworm showed $81.6{\pm}9.3%$ at $1{\times}10^6$ conidia/ml, 100% at $1{\times}10^7$ conidia/ml and 100% at $1{\times}10^8$ conidia/ml respectively. Therefore, we recommend to proper control efficacy against S. exigua in which more than $1{\times}10^7$ conidia/ml suspension of M. anisopliae FT83.

Distribution and Taxonomy of Entomopathogenic Fungal Species from Korea (한국에서 채집된 동충하초의 분포와 분류)

  • Sung, Jae-Mo;Lee, Hyun-Kyung;Choi, Young-Sang;Kim, Yong-Yuk;Kim, Sang-Hee;Sung, Gi-Ho
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.239-252
    • /
    • 1997
  • Thirty three entomopathogenic species belonging to twelve genus were collected throughout 16 collecting sites from 1990 to 1996. Among those collected species, 14 unrecorded species such as Cordyceps bifusispora, C. martialis, C. oxycephala, C. paludosa, C. pentatomi, C. rosea, C. ryogamiensis, Shimizuomyces paradoxa, Akanthomyces aculeatus, Polycephalomyces ramosus, Tilachlidiopsis nigra were added to Korean entomopathogenic species through this study. In nature, occurrence of Cordyceps nutans, C. sphecocephala and Paecilomyces tenuipes were from early June to late September. On the other hand, C. militaris, C. kyushuensis and C. pruinosa were mainly found from mid July to mid August when relative humidity are increased. Nine species of the genus Cordyceps including C. bifusispora and four deuteromycetous species were isolated. As a result of cultural test using six Cordyceps species, anamorph of C. militaris, C. kyushuensis were proved as Verticillium sp. C. pruinosa as Acremonium sp., C. sphecocephala as Hymenostilbe sp. and C. scarabaeicola as Beauveria sp., respectively.

  • PDF