Browse > Article
http://dx.doi.org/10.5656/KSAE.2019.04.0.017

Immunosuppressive Activity of an Entomopathogenic Bacteria, Xenorhabdus ehlersii KSY, and Its Application to Enhance Insecticidal Activity of Bacillus thuringiensis  

Kim, Hyoil (Department of Plant Medicals, College of Life Sciences, Andong National University)
Kim, Yonggyun (Department of Plant Medicals, College of Life Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.58, no.2, 2019 , pp. 101-109 More about this Journal
Abstract
An entomopathogenic bacterium, Xenorhabdus ehlersii KSY, is symbiotic to a nematode, Steinernema longicaudum, and exhibits high entomopathogenic virulence against lepidopteran insects. This study showed that the bacterial pathogenicity is induced by its inhibitory activity against eicosanoid biosynthesis of target insects, resulting in immunosuppression. To be applied for insect pest control, the bacteria should be infected to insect hemocoel. To deliver X. ehlersii to inset hemocoel, Bacillus thuringiensis (Bt) was mixed with the bacteria to breakdown the physical barrier (= midgut epithelium) from midgut lumen to hemocoel. The bacterial mixture significantly enhanced insecticidal activity of Bt only against larvae of Plutella xylostella and Maruca vitrata. For formulation, X. ehlersii cells were freeze-dried and mixed with sporulated Bt cells. The formulated bacterial mixture was applied to semi-field cultivating cabbage crop infested by P. xylostella. The bacterial mixture treatment showed over 95% control efficacy, while Bt alone gave 80% control efficacy. These results suggest that X. ehlersii can be applied to develop a novel insect control agent.
Keywords
Immunity; Insecticide; Control; Xenorhabdus ehlersii; Bacillus thuringiensis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Dowds, B.C.A., Peters, A., 2002. Entomopathogenic nematology, In: Gaugler, R. (Ed.), Virulence Mechanisms. CABI, New York, pp. 79-98.
2 Eom, S., Park, Y., Kim, H., Kim, Y., 2014b. Development of a high efficient "Dual Bt-Plus" insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. Biotechnol. 24, 507-521.   DOI
3 Eom, S., Park, Y., Kim, Y., 2014a. Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopathogenic bacterium Xenorhabdus nematophila. J. Microbiol. 52, 161-168.   DOI
4 ffrench-Constant, R., Waterfield, N., Daborn, P., Joyce, S., Bennett, H., Au, C., Dowling, A., Boundy, S., Reynolds, S., Clarke, D., 2003. Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol. Rev. 26, 433-456.   DOI
5 Forst, S., Clarke, D., 2002. Bacteria-nematode symbiosis, In: Gaugler, R. (Ed.), Entomopathogenic Nematology. CABI, New Brunswick, New Jersey, pp. 57-78.
6 Furlong, M.J., Wright, D.J., Dosdall, L.M., 2013. Diamondback moth ecology and management: problems, progress, and prospects. Annu. Rev. Entomol. 58, 517-541.   DOI
7 Gatsogiannis, C., Lang, A.E., Meusch, D., Pfaumann, V., Hofnagel, O., Benz, R., Aktories, K., Raunser, S., 2013. A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495, 520-523.   DOI
8 Gaugler, R., 2002. Entomopathogenic Nematology. CABI Publishing, Wallingford, UK.
9 Gillespie, J.P., Kanost, M.R., Trenczek, T., 1997. Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611-643.   DOI
10 Godjo, A., Afouda, L., Baimey, H., Decraemer, W., Willems, A., 2018. Molecular diversity of Photorhabdus and Xenorhabdus bacteria, symbionts of Heterorhabditis and Steinernema nematodes retrieved from soil in Benin. Arch. Microbiol. 200, 589-601.   DOI
11 Xu, J., Morisseau, C., Yang, J., Lee, K.S., Kamita, S.G., Hammock, B.D., 2016. Ingestion of the epoxide hydrolase inhibitor AUDA modulates immune responses of the mosquito, Culex quinquefasciatus during blood feeding. Insect Biochem. Mol. Biol. 76, 62-69.   DOI
12 Yooyangket, T., Muangpat, P., Polseela, R., Tandhavanant, S., Thanwisai, A., Vitta, A., 2018. Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus. PLoS One. 13, e0195681.   DOI
13 Ahmed, S., Kim, Y., 2019. An aquaporin mediates cell shape change required for cellular immunity in the beet armyworm, Spodoptera exigua. Sci. Rep. In Press.
14 Ahmed, S., Stanley, D., Kim, Y., 2018. An insect prostaglandin $E_2$ synthase acts in immunity and reproduction. Front. Physiol. 9, 1231.   DOI
15 Nalini, M., Kim, Y., 2007. A putative protein translation inhibitory factor encoded by Cotesia plutellae bracovirus suppresses host hemocyte-spreading behavior. J. Insect Physiol. 53, 1283-1292.   DOI
16 Kim, Y., Kim, K., Kim, H., Park, Y., Kim, G.H., 2013. An integrated biological control using an endoparasitoid wasp (Cotesia plutellae) and a microbial insecticide (Bacillus thuringiensis) against the diamondback moth, Plutella xylostella. Korean J. Appl. Entomol. 52, 35-43.   DOI
17 Kim, Y., Sadekuzzaman, M., Kim, M., Kim, K., Park, Y., Jung, J.K., 2016. Genetic character and insecticide susceptibility on a Korean population of a subtropical species, Maruca vitrata. Korean J. Appl. Entomol. 55, 257-266.   DOI
18 Lavine, M.D., Strand, M.D., 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32, 1295-1309.   DOI
19 Park, J., Stanley, D., Kim, Y., 2013. Rac1 mediates cytokinestimulated hemocyte spreading via prostaglandin biosynthesis in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 59, 682-689.   DOI
20 Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophilus, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476.   DOI
21 Ji, D., Yi, Y., Kim, G.H., Choi, Y.H., Kim, P., Baek, N.I., Kim, Y., 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239, 241-248.   DOI
22 Akhurst, R.J., 1980. Morphological and functional dimorphism in Xenorhabdus spp. bacteria symbiotically associated with the insect pathogenic nematodes Neoplectana and Heterorhabditis. J. Gen. Microbiol. 121, 303-309.
23 Baines, D., Downer, R.G., 1994. Octopamine enhances phagocytosis in cockroach hemocytes: involvement of inositol trisphosphate. Arch. Insect Biochem. Physiol. 26, 249-261.   DOI
24 Sadekuzzaman, M., Stanley, D., Kim, Y., 2018. Nitric oxide mediates insect cellular immunity via phospholipase $A_2$ activation. J. Innate Immun. 10, 70-81.   DOI
25 Seo, S., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase $A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816-3823.   DOI
26 Shi, Y.M., Bode, H.B., 2018. Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Nat. Prod. Rep. 35, 309-335.   DOI
27 Grizanova, E.V., Dubovskiy, I.M., Whitten, M.M., Glupov, V.V., 2014. Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J. Invertebr. Pathol. 119, 40-46.   DOI
28 Ishii, K., Adachi, T., Hamamoto, H., Oonishi, T., Kamimura, M., Imamura, K., Sekimizu, K., 2013. Insect cytokine paralytic peptide activates innate immunity via nitric oxide production in the silkworm Bombyx mori. Dev. Comp. Immunol. 39, 147-153.   DOI
29 Jung, J.K., Seo, B.-Y., Park, J.H., Moon, J.-K., Choi, B.-S., Lee, Y.-H., 2007. Developmental characteristics of soybean podworm, Matsumuraeses phaseoli (Lepidoptera: Tortricidae) and legume pod borer, Maruca vitrata (Lepidoptera: Pyralidae) on semi-synthetic artificial diets. Korean J. Appl. Entomol. 46, 393-399.   DOI
30 Kim, H., Keum, S., Hasan, A., Kim, H., Jung, Y., Lee, D., Kim, Y., 2018b. Identification of an entomopathogenic bacterium, Xenorhabdus ehlersii KSY, from Steinernema longicaudum GNUS101 and its immunosuppressive activity against insect host by inhibiting eicosanoid biosynthesis. J. Invertebr. Pathol. 159, 6-17.   DOI
31 Campos-Herrera, R., Barbercheck, M., Hoy, C.W., Stock, S.S., 2012. Entomopathogenic nematodes as a model system for advancing the frontiers of ecology. J. Nematol. 42, 162-176.
32 Kim, Y., Ahmed, S., Stanley, D., An, C., 2018a. Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83, 130-143.   DOI
33 Kim, Y., Ji, D., Cho, S., Park, Y., 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase $A_2$ to induce host immunodepression. J. Invertebr. Pathol. 89, 258-264.   DOI
34 Berry, C., Crickmore, N., 2017. Structural classification of insecticidal proteins - towards an in silico characterisation of novel toxins. J. Invertebr. Pathol. 142, 16-22.   DOI
35 Bode, H.B., 2009. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol. 13, 224-230.   DOI
36 Boemare, N.E., Akhurst, R.J., Mourant, R.G., 1993. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int. J. Syst. Bacteriol. 43, 249-255.   DOI
37 Bravo, A., Likitvivatanavong, S., Gill, S.S., Soberon, M., 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423-431.   DOI
38 Broderick, N.A., Raffa, K.F., Handelsman, J., 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103, 15196-15199.   DOI
39 Clark, K.D., Pech, L.L., Strand, M.R., 1997. Isolation and identification of a plasmatocyte-spreading peptide from the hemolymph of the lepidopteran insect Pseudoplusia includens. J. Biol. Chem. 272, 23440-23447   DOI
40 Corey, E.J., Albright, J.O., Barton, A.E., Hashimoto, S., 1980. Chemical and enzymic syntheses of 5-HPETE, a key biological precursor of slow-reacting substance of anaphylaxis (SRS) and 5-HETE. J. Am. Chem. Soc. 102, 1435-1436.   DOI
41 Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., Dean, D.H., 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813.   DOI
42 Tabashnik, B.E., Liu, Y.B., Malvar, T., Heckel, D.G., Masson, L., Ballester, V., Granero, F., Mensua, J.L., Ferre, J., 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 94, 12780-12785.   DOI
43 Shrestha, S., Kim, Y., 2009. Biochemical characteristics of immune-associated phospholipase $A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47, 774-782.   DOI
44 Stanley, D.W., 2000. Eicosanoids in invertebrate signal transduction systems. Princeton, New Jersey, NY.
45 Stanley, D.W., Kim, Y., 2014. Eicosanoid signaling in insects: from discovery to plant protection. Crit. Rev. Plant Sci. 33, 20-63.   DOI
46 Stock, S.P., Goodrich-Blair, H., 2008. Entomopathogenic nematodes and their bacterial symbionts: the inside out of a mutualistic association. Symbiosis 46, 65-76.
47 Sung, E.J., Ryuda, M., Matsumoto, H., Uryu, O., Ochiai, M., Cook, M.E., Yi, N.Y., Wang, H., Putney, J.W., Bird, G.S., Shears, S.B., Hayakawa, Y., 2017. Cytokine signaling through Drosophila Mthl10 ties lifespan to environmental stress. Proc. Natl. Acad. Sci. USA 114, 13786-13791.   DOI
48 Talekar, N.S., Shelton, A.M., 1993. Biology, ecology and management of the diamondback moth. Annu. Rev. Entomol. 38, 275-301.   DOI
49 Waterfield, N.R., Ciche, T., Clarke, D., 2009. Photorhabdus and a host of hosts. Annu. Rev. Microbiol. 63, 557-574.   DOI
50 Wu, G., Yi, Y., 2018. Transcriptome analysis of differentially expressed genes involved in innate immunity following Bacillus thuringiensis challenge in Bombyx mori larvae. Mol. Immunol. 103, 220-228.   DOI