• 제목/요약/키워드: entire solutions

검색결과 218건 처리시간 0.029초

APT 공격 탐지를 위한 공격 경로 및 의도 인지 시스템 (Attack Path and Intention Recognition System for detecting APT Attack)

  • 김남욱;엄정호
    • 디지털산업정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.67-78
    • /
    • 2020
  • Typical security solutions such as intrusion detection system are not suitable for detecting advanced persistent attack(APT), because they cannot draw the big picture from trivial events of security solutions. Researches on techniques for detecting multiple stage attacks by analyzing the correlations between security events or alerts are being actively conducted in academic field. However, these studies still use events from existing security system, and there is insufficient research on the structure of the entire security system suitable for advanced persistent attacks. In this paper, we propose an attack path and intention recognition system suitable for multiple stage attacks like advanced persistent attack detection. The proposed system defines the trace format and overall structure of the system that detects APT attacks based on the correlation and behavior analysis, and is designed with a structure of detection system using deep learning and big data technology, etc.

On the natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of concentrated elements

  • Lin, Hsien-Yuan
    • Structural Engineering and Mechanics
    • /
    • 제29권5호
    • /
    • pp.531-550
    • /
    • 2008
  • This paper adopts the numerical assembly method (NAM) to determine the exact solutions of natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of various concentrated elements including point masses, rotary inertias, linear springs, rotational springs and springmass systems. First, the coefficient matrix for an intermediate station with various concentrated elements, cross-section change and/or pinned support and the ones for the left-end and right-end supports of a beam are derived. Next, the overall coefficient matrix for the entire beam is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact solutions for the natural frequencies of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and the associated mode shapes are obtained by substituting the corresponding values of integration constants into the associated eigenfunctions.

Design of Security Management System

  • Kim Seok-Soo;Soh Woo-Young
    • International Journal of Contents
    • /
    • 제1권2호
    • /
    • pp.22-25
    • /
    • 2005
  • Enterprise security management system: Enterprise Security Management (EMS) is centralized integrated management of other kind of security solutions such as intrusion cutoff system, intrusion detection system and virtual private network. With the system, it is possible to establish security policies for entire IT system through interlocking of solutions. A security system of company network is progressing as a ESM(Enterprise Security Management) in existing security solution foundation. The establishment of the security policy is occupying very important area in ESM of the security system. We tried to analyze existing ESM system for this and designed security solution structure for enhancing the inside security. We applied implementing directly IDS system and tested. This test set the focus about inside security

  • PDF

Towards improving finite element solutions automatically with enriched 2D solid elements

  • Lee, Chaemin;Kim, San
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.379-393
    • /
    • 2020
  • In this paper, we propose an automatic procedure to improve the accuracy of finite element solutions using enriched 2D solid finite elements (4-node quadrilateral and 3-node triangular elements). The enriched elements can improve solution accuracy without mesh refinement by adding cover functions to the displacement interpolation of the standard elements. The enrichment scheme is more effective when used adaptively for areas with insufficient accuracy rather than the entire model. For given meshes, an error for each node is estimated, and then proper degrees of cover functions are applied to the selected nodes. A new error estimation method and cover function selection scheme are devised for the proposed adaptive enrichment scheme. Herein, we demonstrate the proposed enrichment scheme through several 2D problems.

스트럿-타이 모델 방법에 의한 콘크리트 구조물의 해석 및 설계 (Analysis and Design of Concrete Structures with Strut-Tie Model Approach)

  • 윤영묵;박문호;박승진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.251-256
    • /
    • 1995
  • This paper presents an evaluation of the strength and behavior of a tested simply supported rectangular reinforced eoncrete beam and a design example of a shear wall using two-dimensional strut-tie model with finite element nonlinear analysis. Strut-tie models reflecting the actual support and loading conditions are developed for the beam and shear wall. The strut-tie model not only provides simple solutions for large number of design situations dealing with the entire range of concrete structures which appear to be rather complicated but also predicts the behavior and strength of concrete members.

  • PDF

OBTAINING BOUNDARY TANGENTIAL COMPONENTS OF POTENTIAL MAGNETIC FIELDS BY A VARIATIONAL METHOD

  • CHOE G. S.
    • 천문학회지
    • /
    • 제31권2호
    • /
    • pp.89-93
    • /
    • 1998
  • An attempt is made to find the boundary tangential components of potential magnetic fields without constructing solutions in the entire domain. In our procedure, the magnetic energy is expressed as a functional of tangential and normal magnetic fields at the boundary and is minimized by the variational principle. This paper reports a preliminary study on two dimensional potential fields above a plane.

  • PDF

Growth order of Meromorphic Solutions of Higher-order Linear Differential Equations

  • Xu, Junfeng;Zhang, Zhanliang
    • Kyungpook Mathematical Journal
    • /
    • 제48권1호
    • /
    • pp.123-132
    • /
    • 2008
  • In this paper, we investigate higher-order linear differential equations with entire coefficients of iterated order. We improve and extend the result of L. Z. Yang by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen and the extended Wiman-Valiron theory by Wang and Yi. We also consider the nonhomogeneous linear differential equations.

내재적 경계조건 방법을 적용한 비정렬 격자 기반의 정상 압축성 Navier-Stokes 해석자 (AN UNSTRUCTURED STEADY COMPRESSIBLE NAVIER-STOKES SOLVER WITH IMPLICIT BOUNDARY CONDITION METHOD)

  • 백청;김민수;최선규;이승수;김철완
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.10-18
    • /
    • 2016
  • Numerical boundary conditions are as important as the governing equations when analyzing the fluid flows numerically. An explicit boundary condition method updates the solutions at the boundaries with extrapolation from the interior of the computational domain, while the implicit boundary condition method in conjunction with an implicit time integration method solves the solutions of the entire computational domain including the boundaries simultaneously. The implicit boundary condition method, therefore, is more robust than the explicit boundary condition method. In this paper, steady compressible 2-Dimensional Navier-Stokes solver is developed. We present the implicit boundary condition method coupled with LU-SGS(Lower Upper Symmetric Gauss Seidel) method. Also, the explicit boundary condition method is implemented for comparison. The preconditioning Navier-Stokes equations are solved on unstructured meshes. The numerical computations for a number of flows show that the implicit boundary condition method can give accurate solutions.

Optimization of structural and mechanical engineering problems using the enriched ViS-BLAST method

  • Dizangian, Babak;Ghasemi, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.613-626
    • /
    • 2021
  • In this paper, an enhanced Violation-based Sensitivity analysis and Border-Line Adaptive Sliding Technique (ViS-BLAST) will be utilized for optimization of some well-known structural and mechanical engineering problems. ViS-BLAST has already been introduced by the authors for solving truss optimization problems. For those problems, this method showed a satisfactory enactment both in speed and efficiency. The Enriched ViS-BLAST or EVB is introduced to be vastly applicable to any solvable constrained optimization problem without any specific initialization. It uses one-directional step-wise searching technique and mostly limits exploration to the vicinity of FNF border and does not explore the entire design space. It first enters the feasible region very quickly and keeps the feasibility of solutions. For doing this important, EVB groups variables for specifying the desired searching directions in order to moving toward best solutions out or inside feasible domains. EVB was employed for solving seven numerical engineering design problems. Results show that for problems with tiny or even complex feasible regions with a larger number of highly non-linear constraints, EVB has a better performance compared to some records in the literature. This dominance was evaluated in terms of the feasibility of solutions, the quality of optimum objective values found and the total number of function evaluations performed.

Lateral torsional buckling of doubly-symmetric steel cellular I-Beams

  • Mehmet Fethi Ertenli;Erdal Erdal;Alper Buyukkaragoz;Ilker Kalkan;Ceyhun Aksoylu;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제46권5호
    • /
    • pp.709-718
    • /
    • 2023
  • The absence of an important portion of the web plate in steel beams with multiple circular perforations, cellular beams, causes the web plate to undergo distortions prior to and during lateral torsional buckling (LTB). The conventional LTB equations in the codes and literature underestimate the buckling moments of cellular beams due to web distortions. The present study is an attempt to develop analytical methods for estimating the elastic buckling moments of cellular beams. The proposed methods rely on the reductions in the torsional and warping rigidities of the beams due to web distortions and the reductions in the weak-axis bending and torsional rigidities due to the presence of web openings. To test the accuracy of the analytical estimates from proposed solutions, a total of 114 finite element analyses were conducted for six different standard IPEO sections and varying unbraced lengths within the elastic limits. These analyses clearly indicated that the LTB solutions in the AISC 360-16 and AS4100:2020 codes overestimate the buckling loads of cellular beams within elastic limits, particularly at shorter span lengths. The LDB solutions in the literature and the Eurocode 3 LTB solution, on the other hand, provided conservative buckling moment estimates along the entire range of elastic buckling.