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ABSTRACT

An attempt is made to find the boundary tangential components of potential magnetic fields without constructing
solutions in the entire domain. In our procedure, the magnetic energy is expressed as a functional of tangential
and normal magnetic fields at the boundary and is minimized by the variational principle. This paper reports a
preliminary study on two dimensional potential fields above a plane.
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I. INTRODUCTION

The magnetic field plays a central role in the dynam-
ics of the solar atmosphere. The solar magnetic field
is generated below the solar surface and is governed by
plasma motions in and below the photosphere whereas
it dominates the plasma dynamics in the solar corona
because the plasma 3, the ratio of plasma pressure to
magnetic pressure, is far smaller than unity there. Thus
the plasma pressure is usually ignored in modeling the
coronal dynamics. Since the wave transit time across a
coronal magnetic structure is far shorter than the time
scale over which the photospheric field profile mani-
fests a remarkable change, the coronal magnetic field is
also considered as quasi-static except when an abrupt
change of state sets in. Most studies on solar atmo-
spheric phenomena have thus been based on force-free
models of coronal magnetic fields.

However, constructing a force-free magnetic field
based on photospheric boundary conditions is a formid-
able task and requires much numerical work (e.g., Mikié
et al. 1989). A linear force-free field, in which the ratio
of current density to magnetic field is constant every-
where, can be handled quasi-analytically, but the fact
that the magnetic energy of a linear force-free field di-
verges in an infinite domain sets a limitation on its
application to real solar magnetic fields (Low 1994).
The simplest case of force-free fields is a potential field
and the solution can be easily obtained by a numerical
computation or quasi-analytically by a base function
expansion.

Boundary value problems seeking force-free solu-
tions can be formulated in two different ways. First,
the tangential components of the magnetic field can be
given as well as the normal component at the boundary.
In this type of problem, usually called BVP1 (bound-
ary value problem 1), the field line connectivity can be
known only after the solution is obtained. In another
type of problem, usually called BVP2, the positions of
field line footpoints are given in addition to the nor-
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mal magnetic field at the boundary. The tangential
components come out as a part of the solution. From
the view point of observers, BVP1s are more relevant
than BVP2 because all three components of the mag-
netic field can be obtained from vector magnetograms
whereas to theorists, BVP2s are more interesting in
that we can follow the evolution of an active region
while footpoints are moving. In a potential field prob-
lem, only the normal component of the magnetic field
is specified and the tangential components are part of
the solution.

The magnetic energy of a system in force-free equi-
librium can be obtained when all three components of
the magnetic field is known at the boundary of the sys-
tem (e.g., Aly 1984). The tangential components of the
magnetic field also contain information about current
sheets in the global field configuration (Low and Wolf-
son 1988). However, theoretical analysis based only on
boundary information has been hindered in BVP2s or
potential field problems because it requires no less work
than finding a global solution.

A magnetohydrostatic (MHS) equilibrium is the state
of energy extremum with a boundary condition on the
normal magnetic field and some other constraints on
the field line connectivity. Thus the equations describ-
ing MHS equilibria can be derived from the variational
principle (e.g., Courant and Hilbert 1953 for potential
field problems, Low 1978 for force-free fields, Chodura
and Schliiter 1981 for general MHS equilibria). Some
methods of finding MHS equilibria employ variational
procedures (e.g., Chodura and Schliiter 1981, Choe and
Lee 1996), but they still seek global solutions. If our in-
terest lies in the boundary tangential field components
only, it is not necessary to extremize the energy vary-
ing the field in the whole domain. Since the energy of
an equilibrium can be expressed as a functional of nor-
mal and tangential field components at the boundary,
we may be able to find the tangential field components
extremizing the system energy. It is rather surprising
that this kind of attempt has not been reported so far.
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Transforming the boundary condition at infinity into a
constraint in the variational procedure may have been
an obstacle in this approach as will be seen in the fol-
lowing sections.

In this paper, we try to find the boundary tangential
magnetic field which minimizes the magnetic energy of
the system. In Section 2, generals on the magnetic en-
ergy of force-free fields are presented. A specific inves-
tigation of 2D potential fields is performed in Section
3. Section 4 gives a.summary and discussion.

II. ENERGY OF FORCE-FREE MAGNETIC
FIELDS

In this section, we present a mathematical formula-
tion of the force-free field and its energy, mainly follow-
ing Aly (1984). A force-free magnetic field is described

by
IJxB=0, (1)

and ,
V-B = 0, (2)

in which B is the magnetic field and J = V x B the
current density in rationalized electromagnetic units.
Equation (1) means that J is parallel to B, i.e.,

J=0oB. (3)

Equation (1) can also be written as

V.-T=0, (4)

in which T is the Maxwell stress tensor given by

2
T:—B—|+BB.«

y )

The magnetic energy W (V') of a force-free field con-
tained in volume V can be expressed as

2W(V)=/B-BdV=/aA~BdV+/ (BxA)-fi do
v 1% av
(6)

in which A is the magnetic vector potential, 9V is the
boundary of volume V', and fi is the unit vector interior
normal to dV. In deriving equation (6), the vector
identity

B VxA=A-VxB-V-(BxA) (7
is used along with equation (3). Another expression
of the magnetic energy of a force-free field is obtained
from tensor virial equations (Aly 1984);

32 B2
—dV = B,(B-r)— — (r-n)|do .
v 2 av 2
L ®)
This equation allows us to compute the magnetic en-
ergy from the boundary value of the magnetic field and
it finds the most practical use when a domain outside

W (V)=

a sphere is concerned. In this paper, our investigation
is limited to an unbounded domain above a plane due
to the tractability of the problem.

Now we further confine our interest to 2.5D force-
free fields in a half-space above a plane. An arcade-like
field configuration along a polarity inversion line may
be an object of our 2.5D models. To handle this field
geometry, a Cartesian coordinate system is employed,
in which the z-z plane is taken to correspond to the
solar surface, the y-axis is the vertical axis and the z-
axis lies on a model polarity inversion line along which
all physical quantities are assumed to be invariant. The
magnetic field can then be described by

B=VAx%+B,2, 9)
where A is the z-component of the magnetic vector
potential which is constant along individual field lines.
Setting A(z — +oo0) = 0, we see another meaning of
A(z,y = 0), the boundary normal flux, i.e.,

& [o.0]
Az) = —/ B,dz = / B,dz . (10)
—00 £
From equations (1) and (2), it can be shown that
B-VB, =0, (11)
B-VJ, =0, (12)

which implies that B, and J, are respectively a function
of A only. The toroidal current density can be written

B J(A)=-V’4 = dA( %2(‘4)>. (13)

This so-called Grad-Shafranov equation is an alterna-
tive expression of the equilibrium condition represented
by equation (1). The distance in the z-direction be-
tween two footpoints of a field line ¢(4) is given by

' B,

where the line integral is performed along the field lme
represented by A. In a 2.5D Cartesian geometry, the
meaningful magnetic energy of the system is the one
contained in a semi-infinite slab with unit depth in the
z-direction, i.e.,

00 00 B2
W = / / —dzdy .
y=0 Jx=~o00 2

In this study, we only deal with magnetic fields whose
energy as well as flux is finite. For this condition to
hold, the asymptotic behavior of the field at infinity
should be such that

(14)

(15)

lim B¥?=0.

T—00

(16)
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Under this assumption, equation (6) yields the mag-
netic energy of a 2.5D force-free field

00 1 R aBz
oW = -/ AB, dz — 5/ sign(B,) A ¢ dx
B _ x

w0 % 9

1 (o)
+_/ |By| B, ¢dzx . (17)
2/
Here the first and second term represent the poloidal
energy and the third term is the toroidal energy. Since
the force-free field without shear ¢ is nothing but a po-
tential field, the first term is the energy of the potential
field with a given boundary normal field distribution.
It should be noted that all the integrals in equation (17)
are to be performed along the z-axis and all the vari-
ables in the integrands are functions of z at y = 0.
The reason why we take z as the independent variable
rather than A is that one value of A corresponds to
two (in a single flux system) or more (in a multiple
flux system) values of z on the z-axis. In a BVP2 type
problem, in which B, and ¢ are given, the tangential
field components B, and B, may be determined by ex-
tremizing the magnetic energy. However, we have not
completed a full investigation of this variational prob-
lem for general 2.5D force-free fields. In this paper,
our report is limited to the simplest case, i.e., the 2D
potential field problem.

III. A VARIATIONAL APPROACH TO 2D
POTENTIAL MAGNETICFIELDS

A potential field is the minimum energy state of all
field configurations having the same boundary normal
field distribution. The energy of a 2D potential field in
a half-space above a plane is given by (eq. [17])

1 lo e}
W = _5/ AB, dz . (18)

o0

Now our task is to find B, (z) minimizing W. To do
this, we must obtain constraints which prescribe the
relation between the given normal magnetic field B,
and the tangential magnetic field B, to be determined.
These constraints can be derived from the force-free
condition (eq. [4]) and the boundary condition at infin-
ity (eq. [16]). From equation (4), we have

/ r"V-TdV = —/ a-Tr" da—/ T-Vrdv =0,
v av v

(19)
where m (> 0) is an integer and 1i is the interior normal
unit vector. With the boundary condition at infinity
given by equation (16), the surface term at infinity in
equation (19) vanishes only form =0 and m =1ina
2D Cartesian geometry. For m = 0, we have two mean-
ingful integral relations between boundary quantities:

/ B,B,dz =0, (20)

(o ¢]

L, B? 1./ 2
(By — 7) dr = 5 (B, —~ B;)dz =0. (21)

x> —00

For m = 1, equation (19) comprises four scalar equa-
tions, but only two of them are independent of equa-
tions (20) and (21):

(o 0]
/ £ B,B,dz =0, (22)

o0

o0 5 B2 1 0 ) 5
: m(By—T) dr = 3 z(B;—B;)dz = 0. (23)

0 —0o0

Equations (20)—-(23) constitute the integral constraints
on our variational problem and will hereafter be called
constraint I, II, ITII and IV respectively. It is to be
noted that equations (20) and (23) are trivial if a sym-
metry exists across the y-axis. However, no symmetry
is assumed in this study.

Minimizing functional W under constraints I-IV is
identical to extremizing another functional

W = /°° K(B;,z)dz , (24)

where
K(B,,z) = —AB,+X1 B.B,+ X (B}~ B2)+ )3z B, B,

+Xz (B! - B2, (25)

i

in which X\’s are Lagrange multipliers. Since K does not
explicitly contain a dB,/dz term, the Euler equation is
simply

oK
a5 =0 (26)

From this we obtain

B (:L‘) _ —-A +)\13y + >\3$By
2(M2+ My z)

(27)

For a potential field with finite energy and flux, field
lines tend to lay themselves down parallel to the z-axis
as z — *o0o. In other words,

. B,
lim =2
z—too B,

=0. (28)

From this asymptotic condition, we find that
=0 (29)
and
—A+MB,+ X3z B,
2 X '

Substituting this back into constraints I, IT and III,
we can calculate Lagrange multipliers A;, Ao and Aj.

B, (:1:) =

(30)
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Defining the integrals

* 2
Iy = / B dz , (31)
—00
o9
Ig = / z B dz , (32)
—00
Ir = j[ z’Bldz (33)
0 A2 00
Ip = / E—da::/ z ABydz (34)
-0 —00

and evaluating the integral

./ AB,dz =0, (35)

oQ
we obtain
IgIp
A= ——B——Q, (36)
Ialc — I3
D
e = —2 (37)
2(alc —1IE):
I41
A3 ___‘“;2. (38)
Iilc—12

Our variational problem is thus solved. For a case of
symmetry across the y-axis, Ig = 0 and A\;=0. As can
be seen in equation (30), Ay determines the magnetic
field at the origin which is located on a polarity inver-
sion line, and ‘

_A (0,0)

T (39)

B,(0,0) =

Far enough away from the origin on the z-axis, field
lines tend to radiate outward. For this tendency, Az is
responsible.

To demonstrate the validity of our method, we con-
struct the tangential field B, for a dipole flux distribu-
tion given by .

y = . 40
4(2,0) = (10)
The normal magnetic field for this flux profile is
2z
. = 41
B!/(.’II,O) ($2 + 1)2 ( )

Evaluation of the integrals defined in equations (31),
(32) and (34) yields

iy
IA4:I(/'=ID:§7
from which we obtain
1
)\225 and )\3=1.

Substituting this into equation (30) gives

z? —
m@m:@T§' (42)

The potential field solution for the boundary flux dis-
tribution given by equation (40) is known to be

y+1

A(m,y) = ;—2_‘_(?]—4_1)2 .

(43)

This leads to the same B.(z,0) profile as is obtained
by us in equation (42).

IV. SUMMARY AND DISCUSSION

In this paper, we have presented a new variational
method of finding the boundary tangential components
of 2D potential magnetic fields. The magnetic energy
is expressed as a functional of boundary quantities and
is minimized under the constraints derived from the
tensor virial equations and the boundary condition at
infinity. Applied to a dipole field, the validity of our
method is confirmed. However, our method can be used
for arbitrary multipole field distributions with more
than one polarity inversion line. We only need to lo-
cate the origin on one of the inversion lines to apply
our procedure.

Since no consideration is given to the field line con-
nectivity in our formulation, our solution is a smooth
function of space as long as the boundary normal field
profile is continuous. In solar plasmas, the field line
connectivity is conserved and even a potential field
may have current sheets if no smooth solution exists
in a certain topology. In such a case, the boundary
tangential magnetic field has discontinuities (Low and
Wolfson 1988). For very mildly sheared solar magnetic
fields, comparing the vector magnetogram and the com-
putational result will tell us whether a singular current
surface is involved or not.

In the future, our investigation will proceed to 2.5D
force-free fields in BVP2 type problems. Finding a
complete set of necessary constraints is the focal prob-
lem in this procedure. Furthermore, an inequality con-
straint comes up in a sheared field problem because
the sign of ¢ and B, determines the sign of B,. With
all this difficulty, this approach is more worth pursuing
than global numerical calculations because we can ob-
tain the functional form of the differential flux volume
from the B, profile, which provides us with a definite
general information about possibility of the field topol-
ogy change by magnetic reconnection.
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