• 제목/요약/키워드: enthalpy method

검색결과 249건 처리시간 0.025초

냉동수술시 수반되는 상변화 열전달 문제에 대한 수치해석적 연구 (A Numerical Study on the Phase-change Heat transfer problem in Cryosurgery)

  • 김동혁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.162-170
    • /
    • 1996
  • A numerical study on the Stefan problem occurred in cryosurgery is performed. Crank-Nicholson type finite difference algorithm based on the enthaly method is adapted to solve the phase change problem in this study. As it is a moving boundary problem, special emphasis is put on the estimation of the freezing front location. Two cases selected here are freezings of human tissue by disk type cryoprobe and by hemispherical one. In both cases, the heat flows are considered to be one dimensional. The calculated results using enthalpy method are compared with those using the program TRUMP and with Neumann's solution. These results agree guite well with each other. While it is pretty difficult to get accurate freezing front location by TRUMP due to the so- called "phase change knee" occured during the phase change, the algorithm based on the enthalpy method is proved to be very powerful to cope with this kind of problem.f problem.

  • PDF

Calculation of Outdoor Air Fraction through Economizer Control Types during Intermediate Season

  • Hong, Goopyo;Hong, Jun;Kim, Byungseon Sean
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.13-19
    • /
    • 2016
  • Purpose: In this study, we examined outdoor air fraction using historical data of actual Air Handling Unit (AHU) in the existing building during intermediate season and analyzed optimal outdoor air fraction by control types for economizer. Method: Control types for economizer which was used in analysis are No Economizer(NE), Differential Dry-bulb Temperature(DT), Diffrential Enthalpy(DE), Differential Dry-bulb Temperature+Differential Enthalpy(DTDE), and Differential Enthalpy+Differential Dry-bulb Temperature (DEDT). In addition, the system heating and cooling load were analyzed by calculating the outdoor air fraction through existing AHU operating method and control types for economizer. Result: Optimized outdoor air fraction through control types was the lowest in March and distribution over 50% was shown in May. In case of DE control type, outdoor air fraction was the highest of other control types and the value was average 63% in May. System heating load was shown the lowest value in NE, however, system cooling load was shown 1.7 times higher than DT control type and 5 times higher than DE control type. For system heating load, DT and DTDE is similar during intermediate season. However, system cooling load was shown 3 times higher than DE and DEDT. Accordingly, it was found as the method to save cooling energy most efficiently with DE control considering enthalpy of outdoor air and return air in intermediate season.

엔탈피방법을 이용한 결빙 및 응축 메커니즘 해석 (Numerical Analysis of Icing and Condensation Mechanism sing Enthalpy Method)

  • 김성환;허민웅;박원규;정성해
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2901-2906
    • /
    • 2007
  • A solver for icing and condensation of water has been developed. The phase change process was solved by the enthalpy method. For the code validation, the temperature and the phase change from water to ice of the driven cavity were calculated. Also, the melting process of the frost on the windshield glass of an automobile has been simulated. The calculation showed a good agreement with analytical solution and other numerical results. Using the present validated code, the condensation of water vapor has been first tried. The computed results provided some physical features of condensation phenomena even though experimental data and other numerical data were not available. For future work, it is recommended to throughly investigate the effects of boundary conditions on the solution.

  • PDF

Fixed-Grid Simulation of Convection-Dominated Melting in a Rectangular Cavity

  • Wongee Chun;Kim, Sin;Kim, Min-Chan
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.796-803
    • /
    • 2001
  • Numerical solutions for the convection-dominated melting in a rectangular cavity are presented. The enthalpy-porosity model is employed as the mathematical model. This model is applied in conjunction with the EIT method to detect boundary movement in a phase changing environment. The absorption and evolution of latent heat during the phase change is dealt with by the enthalpy-based energy equation. This seems to be more efficient than resolving the temperature-based energy equation. The velocity switch-off, which is required when solid changes into liquid, is modeled by the porous medium assumption. For efficiency and simplicity of the solutions procedure, this paper proposes a simple algorithm, which iterates the temperature and the liquid fraction of the cells comprising the front layer. The numerical results agree reasonably well with the experimental data and other previous works using the transformed-grid system.

  • PDF

물의 T-s 선도 상에서 엑서지 및 엑서지율의 고찰 (Consideration of Exergy and Exergy Ratio on T-s Chart of Water)

  • 김덕진;김덕봉
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.827-832
    • /
    • 2009
  • Exergy is the amount of reversible work obtainable when some matter is brought to a state of thermodynamic equilibrium with ambient. This exergy is availability or useful work induced from carnot cycle, and this can calculate the irreversible loss work which occurs within any thermal or power cycle. The exergy ratio is the value of exergy divided by enthalpy of ambient reference, where the quality of energy or enthalpy in substances is evaluated by exergy ratio. Exergy is very important in optimal design method of thermal system or each component, and the value of exergy at given state is calculated by equation. Here, designer can easily understand and find the value of enthalpy because enthalpy is graphically drawn in chart, however exergy did not. In this paper, exergy and exergy ratio of air were drawn on temperature-entropy chart, and we wish to this chart is a help to design, analysis and education.

  • PDF

Enthalpy - based homogenization procedure for composite piezoelectric modules with integrated electrodes

  • Kranz, Burkhard;Benjeddou, Ayech;Drossel, Welf-Guntram
    • Smart Structures and Systems
    • /
    • 제12권5호
    • /
    • pp.579-594
    • /
    • 2013
  • A new enthalpy - based procedure for the homogenization of the electromechanical material parameters of composite piezoelectric modules with integrated electrodes is presented. It is based on a finite element (FE) modeling of the latter's representative volume element (RVE). In contrast to most previously published homogenization approaches that are based on averaged quantities, the presented method uses a direct evaluation of the electromechanical enthalpy. Hence, for the linear orthotropic piezoelectric composite behavior full set of elastic, piezoelectric, and dielectric material parameters, 17 load cases (LC) are used where each load case leads directly to one material parameter. This gives the possibility to elaborate a very strict and easy to program processing. In conjunction with the 17 LC, the enthalpy - based homogenization is particularly suitable for laminated composite piezoelectric modules with integrated electrodes. In this case, the electric load has to be given at the electrodes rather than at the RVE FE model boundaries. The proposed procedure is validated through its comparison to literature available results on a classical 1-3 piezoelectric micro fiber (longitudinally polarized) reinforced composite and a $d_{15}$ shear piezoelectric macro-fiber (transversely polarized) composite module.

엔탈피 모델을 이용한 레이저 용융풀 형상에 대한 수치해석연구 (NUMERICAL SIMULATION OF LASER WELD POOL GEOMETRY USING ENTHALPY METHOD)

  • 이태봉;정하승;신승원
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.61-68
    • /
    • 2013
  • Laser welding is widely used in the industry for the advantage of small heat affected zone and short weld process time. Conduction limit welding can be used to modify the surface characteristic and it is important to identify the heat affecting area correctly for the improvement of manufacturing accuracy. Since time and length scale associated with laser welding process are extremely small, numerical study can be a useful tool. In this study, two-dimensional axi-symmetric version of energy equation with enthalpy method has been used to analyze the effect of laser input conditions on final shape by the laser welding process. The proposed numerical procedure has been benchmarked with several experimental results and compared well. The modified Marangoni and Peclet number have been introduced using controllable input variables. Simple parametric researches have been performed for high Pr number material. The results show that higher Marangoni number increase fluid mixing, thus generating convex type weld pool. On the other hand, the width of the weld pool is proportional to Peclet number.

Numerical Analysis on Melting and Solidification of Pure Metals with Enthalpy-Porosity Model

  • Kim, Sin;Chung, Bun-Jin;Kim, Min-Chan
    • 에너지공학
    • /
    • 제11권2호
    • /
    • pp.99-105
    • /
    • 2002
  • A finite volume numerical approach is developed and used to simulate convection-dominated melting and solidification problems. The present approach is based on the enthalpy-porosity method that is traditionally used to track the motion of the liquid-solid front and to obtain the temperature and velocity profiles in the liquid-phase. The enthalpy-porosity model treats the solid-phase as the porosity in all computational cells that are located on the solid-liquid interfacial boundary. Concerning the computational cells that are fully located in the solid side of the interfacial boundary, the zero value of the porosity severely suppresses the velocity vector to practically a non-existent value that could be set equal to zero. A comparative analysis with the previous numerical approaches is performed to demonstrate the improved features of the presented model. Results of a melting and solidification experiments are also used to assess and evaluate the performance of the model.

엔탈피 방법을 이용한 상변화 과정에 대한 수치해석 (Numerical Analysis by the Enthalpy Method in the Phase Change Process)

  • 권길식;손병진;여문수;윤선주
    • 설비공학논문집
    • /
    • 제6권2호
    • /
    • pp.67-77
    • /
    • 1994
  • In this study, one-dimensional Stefan problem with air-gap resistance in the rectangular mold is considered and the thermal characteristics are examined by using the enthalpy-based simple implicit finite-difference scheme. The enthalpy and temperature are nondimensionalized to obtain general solutions. The temperature distribution and the locations of solidus and liquidus line are obtained and the effects of major parameters on the thermal characteristics are investigated.

  • PDF

폐열회수 환기유닛의 인증시험 방법에 대한 오차분석 (Uncertainty Analysis of Test Method for Heat Recovery Ventilators)

  • 한화택;추연복
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.423-428
    • /
    • 2006
  • Twenty nine HRV models have been tested for last two years since the attestation system has been started by KARSE. It is the objective of the present study to analyze the performance test results. Uncertainty analysis has been conducted to find the effects of measured variables on the uncertainties of test results. The uncertainty of enthalpy is found to be affected by the uncertainty of wet bulb temperature significantly, but not by that of dry bulb temperature for the present range of parameters. The uncertainty of effective enthalpy efficiency is calculated to be 6%P for the cooling condition, and 3%P for the heating condition approximately. In order to reduce the uncertainty of the test results, the uncertainty of wet bulb temperature should be minimized and the indoor/outdoor test conditions should be modified so as to increase the enthalpy difference.

  • PDF