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Abstract — A finite volume numerical approach is developed and used to simulate convection-dominated
melting and solidification problems. The present approach is based on the enthalpy-porosity method that is
traditionally used to track the motion of the liquid-solid front and to obtain the temperature and velocity pro-
files in the liquid-phase. The enthalpy-porosity model treats the solid-phase as the porosity in all computa-
tional cells that are located on the solid-liquid interfacial boundary. Concerning the computational cells that
are fully located in the solid side of the interfacial boundary, the zero value of the porosity severely sup-
presses the velocity vector to practically a non-existent value that could be set equal to zero. A comparative
analysis with the previous numerical approaches is performed to demonstrate the improved features of the
presented model. Results of a melting and solidification experiments are also used to assess and evaluate the

performance of the model.

1. Introduction

In many engineering fields such as thermal energy
storage systems using latent heat and materials pro-
cessing, the melting and solidification is an important
process. The temperature difference in the melt can
give rise to the natural convection. Also, the flow
structure can significantly affect the phase change
process. The convection greatly influences the mor-
phology of the solid-liquid interface by changing the
flow structure in the melt.

In general, numerical simulations commonly used
for phase change problem are classified into two dif-
ferent approaches: the fixed-grid and the transformed-
grid methods. The fixed-grid method uses a single set
of conservation equations and boundary conditions for
the whole domain comprising the solid and liquid phases,
while the transformed-grid method employs the gov-
erning equations based on the classical Stefan formu-
lation. The interface conditions, therefore, are accounted
for differently according to the method incorporated
in solving the phase change problem. In the trans-
formed-grid method, they are easily imposed because
the interface is explicitly solved. However, in the fixed-
grid method, the interface conditions are described as
suitable source terms in the governing equations. A
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nodal latent heat value is assigned to each computa-
tional cell acéording to its temperature or enthalpy.
Upon phase changing, the latent heat absorption, or
evolution, is reflected as a source, or sink, term in the
energy equation.

The fixed-grid method requires the velocity sup-
pression because as a liquid region turns solid, the
zero-velocity condition should be satisfied. The veloc-
ity suppression can be accomplished by a large value
of viscosity for the solid phase or by a suitable
source term in the momentum equation to model the
two-phase domain as a porous medium. The fixed-
grid method combined with the porous medium
method is usually referred to as the enthalpy-porosity
method.

To simulate the phase change process, this paper
proposes a simple numerical scheme based on the
enthalpy-porosity method. The numerical results are
verified with the experimental data. A comparative
analysis with the finite volume and the finite element
approaches is performed. Also, the effect of the inter-
polation scheme for the convection term on the
numerical results is analyzed.

The spatial and temporal discretizations are achieved
in the context of the finite volume scheme and the
fully implicit (backward) Euler scheme, respectively.
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The flow field is expressed in terms of primitive vari-
ables and solved by adopting SIMPLE algorithm.

2. Mathematical Models for Convection-
Dominated Phase Change Problems

The momentum field is subjected to no-slip bound-
ary conditions at the walls. The flow is assumed to
be two-dimensional, laminar, and incompressible. The
physical properties of the material are constant, but
may differ for the liquid and solid phases. The den-
sity difference between solid and liquid phases is neg-
ligible except'when utilizing the Boussinesq approxi-
mation.

In the fixed-grid method, the absorption and evolu-
tion of the latent heat during phase change leads to
the modification of the energy equation because the
interface is not tracked, and thus the interface condi-
tions are not imposed explicitly. The fixed-grid meth-
od relies on the enthalpy formulation, which employs
the enthalpy as a dependent variable in the energy
equation rather than the temperature. The enthalpy
formulation defines the liquid mass fraction f as the
ratio of the liquid mass to the total mass in a given
computational cell. If h, and T, are set to the refer-
ence enthalpy (e.g. saturation enthalpy of solid phase)
and temperature (e.g. melting temperature), respec-
tively, the specific enthalpy will be

h=fL+cT. ‘ &)

The latent heat and the heat capacity are denoted by
L and c, respectively. The heat capacity ¢ may vary
with the phase. The liquid mass fraction can be
obtained from the enthalpy:

0 ifh<0
f= E if 0<h<L. @
1 ifL<h

In isothermal phase change with stationary solid phase,
the following enthalpy-based governing equations are
obtained:"
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In these equations, S, and S, are source terms to
account for the velocity suppression.

During the solution process of the momentum field,
the velocity at the computational cell located in the
solid phase should be suppressed while the velocities
in the liquid phase remain unaffected. One of the
popular models for the velocity suppression is to
introduce a Darcy-like term:"
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u and S,=
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which is easily incorporated into the momentum equa-
tion as shown in Eq. (4). The constant C has a large
value to suppress the velocity as the cell becomes solid
and b is a small number used to prevent the division-
by-zero when a cell is fully located in the solid region,
namely f=0. The choice of the constants is arbitrary.
However, the constants should ensure sufficient sup-
pression of the velocity in the solid region and should
not influence the numerical results significantly. In
this work, C=1x10° kg/m’s and b=0.005 are used."

3. Numerical Methods

The SIMPLE algorithm™ is employed to determine
the velocity and pressure field. The power scheme”
and the deferred correction method™ .are introduced in
the interpolation scheme for the convection term. In
the deferred correction, the lower-order flux approxi-
mation is implicitly imposed while the higher-order
approximation is explicitly obtained from the previous
iteration. For example, the flux through the east face,
F,, is represented as

F.=F+y(F/+F)™ @
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where the superscript ‘H’ and ‘L’ denote the higher-
and the lower-order approximation and Y is the blend-
ing factor to mix the two schemes. Normally, the
explicit part is so small that it may not affect the con-
vergence significantly. In this study, as the lower- and
the higher-order scheme, the upwind difference scheme
and the central difference scheme are chosen, respec-
tively. The case with ¥=0.5 is referred as the mixed
difference scheme.

The discretized energy equation in the finite vol-
ume formulation™ can be expressed as

& Tr= Y an Tt Sp—ar(fo—f7) ®
nb

where subscripts ‘P’ and ‘nb’ refer to the value of
present and neighboring cell, respectively. Superscript
“** denotes the value at previous time step. The
detailed expressions of the influence coefficients aj,
a,, ab and source term S, can be determined easily
(refer Ref. [2]). The terms relating to the liquid frac-
tion separate the non-linear behavior associated with
the phase change into a source term.

If the discretized equation Eq. (8) is solved prop-
erly at the n-th iteration step, the enthalpy obtained
with physical properties assumed at the n-th iteration
step satisfies the energy conservation. Then, the enthalpy
and the liquid fraction can be obtained from Egs. (1)
and (2), respectively. This procedure enables the en-
ergy contained in the cell to redistribute so that the
excessive (or deficient) energy can be stored into (or
retrieved from) latent heat rather than spurious sensi-
ble heat. Also, the temperature can be re-estimated
according to the new mass fraction

(n+1) L
(n+1) __ n+l)
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which gives a better estimation of the temperature for
the next iteration.

At the phase changing cell, the updated tempera-
ture distribution should satisfy the discretization equa-
tion. If we assume the present cell ‘P’ is undergoing
phase change, the temperature is given by

m+1}n(n) (n+
YaTeas
T (10)

(n+1)
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The generalized source GS, can be easily obtained

from Eq. (8). The influence coefficients and the gen-
eralized source are calculated with the updated mass
fraction f*. Although the temperatures of neighbor-
ing cells T,, are obtained at the previous iteration step
and may be comparatively less correct than the other
updated values, the new temperature T based on
the updated mass fraction will be a more accurate
estimation. This temperature can be used to update
the mass fraction with the enthalpy expression. This
predictor-corrector procedure will be applied itera-
tively only to phase changing cells consisting in the
phase change front. The whole set of the governing
equations do not need to be solved during this proce-
dure. It should be noted that during the inner itera-
tion, the temperatures at neighboring cells are not
changed but the updated temperature is a good esti-
mation for the next iteration. The proposed algorithm
seems to be very effective due to its simplicity and
low computational cost. Furthermore, this can be readily
adaptable to any numerical scheme designed for com-
putational efficiency. This algorithm always ensures
the energy conservation at the phase changing cell.

In this study, another siniple algorithm is introduced
to further improve the con\}ergence. Consider the pre-
dictor-corrector procedure used in the discretized energy
equation, Eq. (8). During the procedure, in order to
obtain the converged temperature faster from the non-
linear relations, the Newton-Raphson method is em-
ployed. The problem will be to find the temperature
that minimizes the objective function ®:

®= a,,T,,—[ZaanmSp—ail(fp—f?)]. an

The updated temperature will be

oo 22T

JT (12)

and if the Jacobian d®/JT, is known, the Newton-
Raphson method can assure faster convergence. How-
ever, the Jacobian cannot be calculated cheaply.
Recalling that the neighboring temperatures are as-
sumed to be constant during the predictor-corrector
procedure and f does not have terms relating to T,
explicitly and assuming that the thermo-physical pro-
perties are not dependent on the temperature strongly,

the Jacobian can be approximated as 9®™/0T,=al .

Energy Engg. J (2002), Vol. 11(2)
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Therefore, the updated temperature will be easily
obtained:
_ (n)—q)(ﬂ)

(n+1)
T =T

—. 13)

P

Even though the Jacobian is not directly calculated,
the preliminary studies on heat-conduction phase-change
examples show that this Newton-Raphson like scheme
reduces the total number of inner iterations required
for converged solutions by 2/3 of the original one.”

4. Numerical Results and Discussions

The convection-dominated melting of a pure gal-
lium is simulated with the proposed algorithm. The
numerical predictions are verified and discussed with
the experimental and numerical results in the litera-
ture. The experiment of Gau and Viskanta” is men-

tioned as a reference because it has been widely cited
for the verification of numerical models."™ The pre-
sent numerical results are compared with the trans-
formed-grid results™ and the finite element solutions."”

The experimental configuration is sketched in Fig.
1. Initially, a solid gallium block is kept at T=28.3
°C. The temperature at the left wall is increased
instantly to 38.0°C, while the right wall is maintained
at the initial temperature. The physical properties used
in the calculation are adopted from Brent er al
(1988)."

The Prandtl number, the Rayleigh number and the
Stefan number are defined as

o
pr=Yt Ra=EPATH g0 Ta) gy
o, oV, L

thus, Pr=0.0216, Ra=6.057x10° and Ste=0.03912, re-
spectively. In this, T, is the melting temperature, L is
the latent heat, H is the cavity height and the temper-
ature difference is defined as AT=T,-T,. In the sim-
ulation, we use uniformly spaced 50x36 grid, which
is similar to the grid (50x30) adopted by Viswanath
and Jaluria after a grid sensitivity study.

The predicted phase change fronts are shown with
the results from the experiment and other numerical
models in Fig. 2. The convection term is interpolated
based on the mixed difference scheme. When analyz-
ing solid-liquid interfaces at 6 and 10 min, all numer-
ical results calculated using these models are in agre-
ement with the experimental data. At 19 min the
solid-liquid interfaces obtained by the fixed-grid ap-
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Fig. 1. Schematics of phase change problems in a
rectangular cavity,
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Fig. 2. Phase change fronts during the gallium melting.
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proach show differing results than that of the experi-
ment, especially at the top region. Such discrepancy
may be attributed to several factors. Even though the
hot wall temperature is assumed to reach the desired
temperature upon starting the experiment, in fact, to
raise the temperature impulsively to the desired one is
very difficult in practice. The actual amount of energy
transferred to the gallium through the hot wall should
be less than that imposed in the idealized calculation,
so that the retardation of the front evolution in exper-
iments may be likely. The inaccurate modeling of the
physical properties such as the anisotropic nature of
the thermal conductivity, as well as, the numerical
modeling error can be another reason of the discrep-
ancy. At 19 min when the effect of delayed heat-up at
the hot wall is less significant, the interfaces obtained
with the fixed-grid correspond better than those with
the transformed-grid. The finite element results at 19
min are not listed due to the lack of the data (Desai
and Vafai, 1993).

In order to show the flow structure in the melt, the
streamlines are plotted in Fig. 3. An interesting point
to note is that the flow structures obtained in previous

studies”’” show only a single cell in the melt region.
With the transformed-grid, Viswanath and Jaluria™
observed a secondary recirculation cell in the lower
part of the melt region. However, the secondary recir-
culation eddies are missed completely by the fixed-
grid with the enthalpy method. They used the power
scheme for the interpolation of the convection term.
To analyze their effect on the numerical results, in
the present study, we adopt 4 often-used interpolation
schemes for the convection term: the upwind differ-
ence, the central difference, the mixed schemes and
the power scheme. Even though the central difference
scheme is known to suffer from severe oscillation on
coarse grids, it converges more rapidly to an accurate
solution as the grid is refined and offers a good com-
promise among accuracy, simplicity and efficiency as
stressed by Ferziger and Peric.”) The central differ-
ence scheme predicts the secondary cell and the mixed
difference scheme shows the obvious distortion of the
streamlines in the lower melt region at 19 min. The
power and the upwind difference schemes fail to pre-
dict the minor flow motion in the melt. On the other
hand, the mixed difference scheme satisfies the pre-

(c) at 19 min

Fig. 3. Streamlines for gallium meting (from the left to the right, the upwind difference, the central difference,

the mixed schemes and the power scheme).
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Fig. 4. Temperature distribution in the liquid during
the solidification of tin at 0.529 hr.

dictability of the phase front and the flow structure in
the melt, while the central difference scheme results
in some distortion of the front as shown in Fig. 3 but
not observed in the experiment.

The solidification of tin is also simulated with the
proposed model. The experimental and the transformed-
grid results by Wolff and Viskanta"” shown in Fig.
1(b) are cited for the comparison. The major dimen-
sionless numbers are Pr=0.0149, Ra=6.794x10* and
Ste=0.004807.

Figure 4 shows the temperature distribution in the
liquid during the solidification of tin at 0.529 hr. The
present fixed-grid solutions are very similar to the
transformed-grid results. Considering some of the scat-
ter in the measured temperatures as noted by Wolff
and Viskanta,'" the results generated from numerical
methods are in fairly good agreement with the exper-
imental data. ‘

5. Conclusion

The convection-dominated melting and solidifica-
tion in a rectangular cavity is investigated numerically
on the basis of the fixed-grid formulation. The phase
change process and the velocity suppression is mod-
eled by the enthalpy-porosity method.

The gallium melting is simulated with the present
model and the resuits are comparable with the exper-

OlL{XIZEt M11A M25 20024 6

imental data in the literature. The comparison with
the transformed-grid calculation shows that the present
model produces similar or better predictions of the
macroscopic feature of the melting like the movement
of the phase change front. The present model is ver-
ified with the experiment of the tin solidification and
is also compared with the transformed-grid simulation.

The flow structure in the melt is investigated with
various interpolation schemes for the convection term.
The deferred correction scheme and the power scheme
are tested. The usual upwind difference scheme and
the power scheme fail to reproduce the detailed flow
structure in the melt. The central difference scheme is
able to predict the minor structure in the melt, but it
somewhat distorts the phase front. On the contrary,
the mixed difference scheme can simulate the detailed
flow structure as well as the macroscopic behavior
during phase change such as the front movement and
the temperature distribution.
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