• Title/Summary/Keyword: enhancement mode

Search Result 323, Processing Time 0.049 seconds

An Enhancement of Channel Separability for Stereophonic Signals by Common Mode Rejection Method (동상분 제거에 의한 입체음향의 채널 분리도 개선)

  • Kwon, Ho-Yeol
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.439-442
    • /
    • 1998
  • In this paper, we firstly suggested C&D (Common mode and Differential mode) model for the representation of a stereophonic signal. Then a measure of stereophonic channel separability is defined as the ratio of differential mode energy to total energy in frequency domain. After that, a new channel separability enhancement scheme is proposed by the control of common mode rejection. Finally, some experimental results are presented in order to verify our scheme.

  • PDF

An Efficient Mode Decision Method for Fast Intra Encoding in the SVC Enhancement Layer (SVC 향상 계층의 빠른 인트라 부호화를 위한 효율적인 모드 결정 방법)

  • Cho, Mi-Sook;Kang, Jin-Mi;Chung, Ki-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.872-883
    • /
    • 2011
  • SVC is an emerging video coding standard as an extension of H.264/AVC. This standard uses inter prediction, intra prediction and a new inter-layer prediction to improve coding performance of enhancement layers. However, it has high computational complexity. In this paper, we propose an efficient intra prediction mode decision method in the spatial enhancement layer to reduce the computational complexity. The proposed method consists of two phases. In the first phase, Intra_BL mode is selected using the RD cost of Intra_BL in advance. We exploit the fact that the RD cost and prediction mode are similar to those of neighbor macroblocks. In the second phase, we predict the enhancement layer mode using correlation between intra mode of enhancement layer and that of the base layer. Experimental results show that the proposed method could save from 48.15% to 56.32% in encoding time while degradation in video quality is negligible.

Merging of SPOT P-mode and XS-mode Images using Color Transformation and Image Enhancement (색변환과 영상개선기법을 이용한 SPOT P-mode와 XS-mode 영상합성)

  • 손덕재;이종훈
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.2
    • /
    • pp.103-113
    • /
    • 1991
  • The accuracy of input coordinates of ground control points and check points affects great influences to the results of ground coordinate computation in using SPOT digital image data. The original SPOT images displayed on CRT are not usually adequate for identifying the object features and determining the point positioning. Hence, appropriate image processing techniques such as contrast enhancement, subpixel interpolation, edge enhancement, and spatial filtering are needed. In this study, the principles of digital image processing needed for accurate three dimensional positioning and spectral characteristic analysis are investigated. The algorithms for the actual applications are developed and programmed. And using the developed image processing software, some SPOT P-mode and XS-mode images are merged into the SPOT P+XS, the high-resolution color composite image.

  • PDF

Application of Local Histogram and Plateau Equalization Algorithm for Contrast Enhancement of Real Time Thermal Image (실시간 열영상 대조비 개선을 위한 대역추출 및 플래토 평활화 알고리즘 적용)

  • 조흥기;김수곤;전희종
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.76-85
    • /
    • 2004
  • In this paper, the contrast enhancement method of thermal image is proposed and it is the plateau equalization algorithm using local histogram for the real time display of infrared imagery. Through hardware implementing, its practicality and adequacy are proved. Examinations are executed to verify the effect of contrast enhancement by bright control and contrast control automatic to the plateau value in the manual mode, and that verified the effect of contrast enhancement in the automatic mode and the practicality in the real system. According to the experiment results, the proposed "the application of local histogram and plateau equalization algorithm for contrast enhancement of real time thermal image"in this dissertation is the verified method for the thermal imaging contrast enhancement.

Effect of Subthreshold Slope on the Voltage Gain of Enhancement Mode Thin Film Transistors Fabricated Using Amorphous SiInZnO

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.250-252
    • /
    • 2017
  • High-performance full swing logic inverters were fabricated using amorphous 1 wt% Si doped indium-zinc-oxide (a-SIZO) thin films with different channel layer thicknesses. In the inverter configuration, the threshold voltage was adjusted by varying the thickness of the channel layer. The depletion mode (D-mode) device used a TFT with a channel layer thickness of 60 nm as it exhibited the most negative threshold voltage (-1.67 V). Inverters using enhancement mode (E-mode) devices were fabricated using TFTs with channel layer thicknesses of 20 or 40 nm with excellent subthreshold slope (S.S). Both the inverters exhibited high voltage gain values of 30.74 and 28.56, respectively at $V_{DD}=15V$. It was confirmed that the voltage gain can be improved by increasing the S.S value.

Ultrahuge Light Intensity in the Gap Region of a Bowtie Nanoantenna Coupled to a Low-mode-volume Photonic-crystal Nanocavity

  • Ebadi, Nassibeh;Yadipour, Reza;Baghban, Hamed
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.85-89
    • /
    • 2018
  • This paper presents a new, efficient hybrid photonic-plasmonic structure. The proposed structure efficiently and with very high accuracy combines the resonant mode of a low-mode-volume photonic-crystal nanocavity with a bowtie nanoantenna's plasmonic resonance. The resulting enormous enhancement of light intensity of about $1.1{\times}10^7$ in the gap region of the bowtie nanoantenna, due to the effective optical-resonance combination, is realized by subtle optimization of the nanocavity's optical characteristics. This coupled structure holds great promise for many applications relying on strong confinement and enhancement of optical field in nanoscale volumes, including antennas (communication and information), optical trapping and manipulation, sensors, data storage, nonlinear optics, and lasers.

A 1.5V-25MHz symmetric feedback current enhancement continuous-time current-mode CMOS filter (1.5V-25MHz 대칭적 귀환전류 증가형 연속시간 전류 구동 CMOS 필터)

  • 장진영;윤광섭
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.514-517
    • /
    • 1998
  • This paper proposed a symmetric feedback current enhancement circuit with 1.5V power supply to design a 3$^{rd}$ order butterworth low pass filter. The proposed filter designed on 0.8.mu.m CMOS n-well double poly/double metal process simulated in HSPICE composed of the 3dB frequency enhancement circuit and the unity-gain frequency enhancement circuit. The simulation result on the design filter shows the badnwith of 25MHz, phase of 92.6 .deg. and power consumption of 0.3mW..

  • PDF

Development of Selective GaN etching Process for p-GaN/AlGaN/GaN E-mode FET Fabrication (p-GaN/AlGaN/GaN E-mode FET 제작을 위한 선택적 GaN 식각 공정 개발)

  • Jang, Won-Ho;Cha, Ho-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.321-324
    • /
    • 2020
  • In this work, we developed a selective etching process for GaN that is a key process in p-GaN/AlGaN/GaN enhancement-mode (E-mode) power switching field-effect transistor (FET) fabrication. In order to achieve a high current density of p-GaN/AlGaN/GaN E-mode FET, the p-GaN layer beside the gate region must be selectively etched whereas the underneath AlGaN layer should be maintained. A selective etching process was implemented by oxidizing the surface of the AlGaN layer and the GaN layer by adding O2 gas to Cl2/N2 gas which is generally used for GaN etching. A selective etching process was optimized using Cl2/N2/O2 gas mixture and a high selectivity of 53:1 (= GaN/AlGaN) was achieved.

Synthetic Phase Tuning Technique for the Transduction of a Specific Ultrasonic Torsional Mode in a Pipe (배관에서의 특정 비틀림 초음파 모드 송수신을 위한 합성 위상 조절 기법)

  • Kim, Hoe Woong;Kwon, Young Eui;Joo, Young Sang;Kim, Jong Bum;Kim, Yoon Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.249-257
    • /
    • 2013
  • This study newly presents a synthetic phase tuning technique to suppress the unwanted torsional mode while enhancing the desired torsional mode in a pipe. Specifically, we aim at the enhancement of the first torsional mode and the suppression of the undesired, second torsional mode. Earlier efforts were to enhance the desired wave mode only in the hope that the enhancement results in the suppression of the unwanted wave mode. Unlike these efforts, the suggested technique makes the complete cancellation of the unwanted wave mode but it is shown to enhance the desired first mode for torsional wave problems. In the present study, the synthetic phase tuning is developed for the cancellation of the unwanted wave mode, meaning that the number of necessary experimental equipments is reduced. Simulation and experiment were carried out to check the effectiveness of the proposed method. As an application of the suggested technique, we investigated the reflection and mode conversion characteristics of the first torsional mode according to the step thickness variation in a stepped pipe.

Diameter Effect of Silver Nanorod Arrays to Surface-enhanced Raman Scattering

  • Gu, Geun Hoi;Kim, Min Young;Yoon, Hyeok Jin;Suh, Jung Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.725-730
    • /
    • 2014
  • The effect the diameter of silver nanorod arrays whose distance between the nanorods was uniform at 65 nm have on Surface-enhanced Raman Scattering (SERS) has been studied by varying the diameter from 28 to 51 nm. Nanorod length was fixed at approximately 62 nm, which is the optimum length for SERS by excitation with a 632.8 nm laser line. The transverse and longitudinal modes of the surface plasmon of these silver nanorods were near 400 and 630 nm, respectively. The extinction of the longitudinal mode increased with increasing nanorod diameter, while the transverse mode did not change significantly. High-quality SERS spectra of p-aminothiophenol and benzenethiol adsorbed on the tips of the silver nanorods were observed by excitation with a 632.8 nm laser line. The SERS enhancement increased with increasing nanorod diameter. We concluded that the SERS enhancement increases when the diameter of silver nanorods is increased mainly by increasing the excitation efficiency of the longitudinal mode. The enhancement factor for the silver nanorods with a 51 nm diameter was approximately $2{\times}10^7$.