• Title/Summary/Keyword: engineering tools

Search Result 3,945, Processing Time 0.028 seconds

A Multiagent System for Workflow-Based Bioinformatics Tool Integration

  • Sohn, Bong-Ki;Lee, Keon-Myung;Kim, Hak-Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.133-137
    • /
    • 2003
  • Various bioinformatics tools for biological data processing have been developed and most of them are available in public. Most bioinformatics works are carried out by a composite application of those tools. Several integration approaches have been proposed for easy use of the tools. This paper proposes a new multi agent system to integrate bioinformatics tools in the perspective of workflow since the composite applications of tools can be regarded as workflows. For the easy integration, the proposed system employs wrapper agents for existing tools, uses XML-based messages in the inter-agent communication, and agents are supposed to extract necessary information from the received messages. This allows new tools to be easily added on the integration framework. The proposed method allows various control structures in workflow definition and provides the progress monitoring capability of the on-going workflows. In particular, agents in this system have the rule-based architecture which allows the defined rule set to be a special role agent. This feature provides fast and flexible agent development to aid in managing the complexity of bioinformatics application. This system has been partially implemented and has been proven to be a viable implementation for workflow-based bioinformatics tool integration.

Development and Validation of Core Competency Assessment Tools for Engineering Student (공학계열 학생 핵심역량 진단도구 개발 및 타당화 연구)

  • Kim, Younyoung;Yoon, Jiyoung
    • Journal of Engineering Education Research
    • /
    • v.24 no.4
    • /
    • pp.3-20
    • /
    • 2021
  • As we have become more interested in 'competency' that means ability to do something around the world, the competency of the best performers has also been introduced in the university curriculum as a concept of core competency. Research continues on why this competency-based education is needed compared to existing academic-oriented education, how it can be introduced into existing curricula, and how it can be developed and evaluated in detail. This study develops and validates core competency assessment tools that can diagnose core competencies of engineering students. Therefore, this research paper conducted a literature review related to core competencies and also core competency assessment tools of university students. It seeks to explore the implications of core competency assessment tools for engineering students and then lay the foundation for competency-based teaching and learning at engineering colleges. And also it defines the concepts of core competencies and each core competency of engineering students through prior research analysis of competence, core competence, and core competence of university students. The primary core competency assessment tool consisted of sub-factors and questions of core competencies. It were modified through the expert validation of the primary one and then it was used as a core competency assessment tools for preliminary investigation. The core competency assessment tools for engineering students are consisted of 6 competencies, 22 sub-factors, and 91 questions. There are core competencies as follows: engineering basic competencies, major engineering competencies, self-management competencies, communication competencies, interpersonal competencies, global competencies. The preliminary survey was conducted on 426 engineering students attending the Engineering Education FESTA 2019. The preliminary findings were derived by conducting exploratory factor analysis, confirmatory factor analysis, question characteristics analysis, and reliability analysis for validation. The core competency assessment tools developed through this study can be used to verify the effectiveness of the curriculum and programs for students at engineering colleges. In addition, the developed core competencies, sub-factors, and questions can be utilized in a series of courses that design, conduct, and evaluate engineering curricula and programs as competency-based curriculum. The significance of this study is to lay the groundwork for providing competency-based education engineering students to develop core competencies.

A Model of Problem Solving Environment for Integrated Bioinformatics Solution on Grid by Using Condor

  • Kim, Byoung-Jin;Sun, Chung-Hyun;Yi, Gwan-Su
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.13-20
    • /
    • 2004
  • Grid system has the potential to resolve the current need of bioinformatics for super-computing environment inexpensively. There are already several Grid applications of bioinformatics tools. To solve the real-world bioinformatics problems, however, the various integration of each tool is necessary in addition to the implementation of more basic tools. Workflow based problem solving environment can be the efficient solution for this type of software development. There are still heavy overhead, however, to develop and implement workflow model on current Grid system. He re we propose a model of simple problem solving environment that enables component based workflow design of integrated bioinformatics applications on Grid environment by using Condor functionalities. We realized this model for practical bioinformatics solutions of a genome sequence analysis and a comparative genome analysis. We implemented necessary bioinformatics tools and interfacing tools as the components, and combine them in the workflow model of each solution by using the tools presented in Condor.

  • PDF

Calibration Methods for Measurement Uncertainty of Power Assembly Tools (동력식 조립공구의 측정불확도 산출방법 개발)

  • Oh, Se-heon;Kang, Ki-young;Hong, Min-sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.496-501
    • /
    • 2015
  • In this study, calibration procedure of power assembly tools is suggested and methods are developed for calculating measurement uncertainty. Fist of all, the calibration of joint simulator bench (JSB) was carried out for maintaining traceability and the uncertainty components of JSB were analyzed. The influences of tool speed, tolerance, temperature and length of the adapter were examined by the torque measurement values through experiments. From this research, credibility for calibration results could be enhanced. This experimental results, being used as an effective tool for calibration of power assembly tools, will provide and improve the accuracy of the use of the power assembly tools.

Tool Material Dependence of Hard Turning on The Surface Quality

  • Park, Young-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • This paper presents an experimental study of the effect of cutting tool materials on surface quality when turning hardened steels. Machining tests on a lathe are performed using polycrystalline cubic boron nitride (PCBN) and ceramic tools at various cutting conditions without coolant. From the experiments, it is observed that the radial force is the largest force component regardless the type of tool used. The specific cutting energy for the hard turning is estimated to be considerably smaller than the specific grinding energy. It is also found that cutting force and surface roughness with the PCBN tools are higher and better than those with the ceramic tools under the same cutting condition. It is due that the PCBN tools transfer the generated heat more effectively than the ceramic tools due to their higher thermal conductivity. The optimal cutting conditions for the best surface quality are selected by using an orthogonal array concept.

Enhancenent of Wear Resistance of TiN Coated High Speed Steel Tools through Improving some Coating Processes (코팅공정 개선에 의한 TiN코팅 고속도강 공구의 내마모특성 향상)

  • Lee, Y.M.;Son, Y.H.;Kim, H.S.;Back, J.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.32-37
    • /
    • 1996
  • Using the are ion plating(AIP) process, TiN coating was deposited onto high speed steel substrates. The effects of coating thickness, titanisum interlayer and shield on wear resisting capability of the coated tools were investigated. In order to promote good adhesion between the substrate and the TiN coating a thin Ti interlayer was deposited. A shield was set up also between Ti target and high speed steel substrates to prevent molten droplets from reaching the substrate. Three series of varying thickness of TiN coated layer were prepared with or without the Ti interlayer, and with or without the shield. The tools with the Ti layer and the shield showed longer tool lifes than those of other series of tools and the commercially available TiN coated HSS tools, by up to 70%.

  • PDF

Analysis and Application of Front-End Code Playground Tools for Web Programming Education

  • Aaron Daniel Snowberger;Semin Kim;SungHee Woo
    • Journal of Practical Engineering Education
    • /
    • v.16 no.1_spc
    • /
    • pp.11-19
    • /
    • 2024
  • Web programming courses are often included in university Computer Science programs as introductory and foundational computer programming courses. However, amateur programmers often have difficulty learning how to integrate HTML, CSS, JavaScript, and various preprocessors or libraries to create websites. Additionally, many web programming mistakes do not produce visible output in the browser. Therefore, in recent years, Front-End Code Playground (FECP) tools that incorporate HTML, CSS, and JavaScript into a single, online web-based application have become popular. These tools allow web coding to happen directly in the browser and provide immediate visual feedback to users. Such immediate visual feedback can be particularly beneficial for amateur coders to learn and practice with. Therefore, this study gathers data on various FECP tools, compares their differences, and provides an analysis of how such tools benefit students. This study concludes with an outline of the application of FECP to web programming courses to enhance the learning experience.

The Effects of Engineering Tools on Students' Math Academic Achievement and Math Learning Attitude in Middle School Mathematics Geometrical Unit (중학교 수학 기하 단원에서 공학적 도구 활용이 학생들의 수학 학업 성취도와 수학 학습 태도에 미치는 효과)

  • Park, Rae-Seong;Kwon, Jong-Kyum;Lee, Dong-Yub
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.67-75
    • /
    • 2019
  • This study was conducted to analyze the effects of mathematics classes using engineering tools on students' mathematics academic achievement and mathematics learning attitude, focusing on the basic figure and drawing sections of the first grade of middle school. Eighty students of first-grade at H Middle School in South Gyeongsang province were divided into two groups, taking a total of six weeks of classes using engineering tools(Algeomath) and traditional tools, and covariate analysis(ANCOVA) was used to analyze students' mathematics academic achievements and changes in mathematical learning attitude. The analysis found that classes using engineering tools were effective in students' mathematics academic achievements and attitude of learning math. Based on the results of the study, the necessity of utilizing various engineering tools in the future secondary school math class and the prospect and implications of the classes were discussed.

Input Shaping for Servo Control of Machine Tools (공작기계의 서보제어와 입력성형기법)

  • Kim, Byung-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1011-1017
    • /
    • 2011
  • Servo control loops are a core part in the control architecture of machine tools. Servo control loops manage acceleration, velocity and position of all the axes in a machine tool based on commands. The performance of servo control loops sets the basis for quality of production paris and cycle time reduction. First, this paper presents a general control architecture of machine tools and several control schemes in literature, which can be applicable to machine tools control; including Zero Phase Error Tracking Control (ZPETC) and Cross Coupling Control (CCC). After that, modem control strategies to mitigate the problem of high speed machining are reviewed. In high speed machining, high accelerations excite the machine structure up to high frequencies, thereby exciting the structure's modes of vibration. These structural vibrations need to be damped if accurate positioning or trajectory following is required. Input shaping is an attractive option in dealing with structural vibrations. The advantages and drawbacks of using input shaping technique for machine tools are discussed in detail.

A Study on the Micro Tool Fabrication using Electrolytic In-process Dressing (전해 연속 드레싱을 이용한 마이크로 공구 제작)

  • 이현우;최헌종;이석우;최재영;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.171-178
    • /
    • 2002
  • With increasing the needs for micro and precision parts, micro machining technology using micro tools has been studied to fabricate a small part with high density such as electronics, optics, communications, and medicine industry more than before. Though these micro tools have developed rapidly, it is difficult to apply them to micro fabrication technologies, because of the inherent manufacturing. In this study, micro tools (WC) to produce micro structures and parts were manufactured by cylindrical grinding machine employing ELID (Electrolytic In-process Dressing) technique and the micro tools are fabricated as square shape with the dimension less than 100${\mu}{\textrm}{m}$. With the micro tools on the same machine, characteristics of micro grooving and drilling are evaluated. Also we compare normal micro machining with ultrasonic micro machining on the vibration table. It is confirmed that the developed micro tools are fully applicable to micro grooving, micro drilling and free form cutting.