
11

실천공학 교수법

J. Pract. Eng. Educ. 16(1), 11-19, 2024

Analysis and Application of Front-End Code Playground
Tools for Web Programming Education

Aaron Daniel Snowberger1, Semin Kim1, SungHee Woo2*
1Department of Computer Education, Jeonju National University of Education 55101, Korea
2Department of Computer Engineering, Korea National University of Transportation, Chungju 27469, Korea

pISSN: 2288-405X eISSN: 2288-4068http://JPEE.org

[Abstract]

Web programming courses are often included in university Computer Science programs as introductory and foundational com-
puter programming courses. However, amateur programmers often have difficulty learning how to integrate HTML, CSS, JavaS-
cript, and various preprocessors or libraries to create websites. Additionally, many web programming mistakes do not produce vis-
ible output in the browser. Therefore, in recent years, Front-End Code Playground (FECP) tools that incorporate HTML, CSS, and
JavaScript into a single, online web-based application have become popular. These tools allow web coding to happen directly in the
browser and provide immediate visual feedback to users. Such immediate visual feedback can be particularly beneficial for amateur
coders to learn and practice with. Therefore, this study gathers data on various FECP tools, compares their differences, and provides
an analysis of how such tools benefit students. This study concludes with an outline of the application of FECP to web programming
courses to enhance the learning experience.

Key Words: Front-end, Web Programming, Programming Education, JavaScript, Code Playgroun

Copyright © Korean Institute for Practical Engineering Education

I. Introduction

The Internet has become an integral part of human
life, encompassing everything from enhancing social
connections and promoting social dialogues, to the growth
and proliferation of businesses both online and offline, to
widespread online education and the rapid distribution
of scientific knowledge. Websites that are designed and
developed well, with intuitive interfaces and useful features
have been the primary drivers of the growth and innovation
of the Internet. Therefore, teaching effective web design
and development remains an important necessity in many
Computer Science programs.

In recent years, however, the rapid growth in the number

of web programming frameworks and libraries has far
outpaced the academic world. While HTML, CSS, and
JavaScript remain the backbone of web page architecture,
integrating numerous tools and libraries into web
programming classes remains challenging. Additionally,
amateur programmers often find it difficult to learn not only
the different syntaxes of HTML, CSS, and JavaScript, but
also how they link and work together.

Many mistakes in web programming do not result in
any visible output in the browser. This makes learning
and debugging more difficult. Therefore, in recent years
Front-End Code Playground (FECP) tools that incorporate
HTML, CSS, and JavaScript into a single, online web-based
applications have become increasingly popular. These tools

http://dx.doi.org/10.14702/JPEE.2024.011

This is an Open Access article distributed under the
terms of the Creative Commons Attribution Non-
Commercial License (http://creativecommons.org/

licenses/by-nc/3.0/) which permits unrestricted non-commercial use,
distribution, and reproduction in any medium, provided the original work
is properly cited.

Received 30 November 2023; Revised 21 December 2023
Accepted 28 December 2023

*Corresponding Author
E-mail: shwoo@ut.ac.kr

실천공학교육 특별호

12

J. Pract. Eng. Educ. 16(1), 11-19, 2024

http://dx.doi.org/10.14702/JPEE.2024.011

To address these problems (and more), this study suggests
FECPs as tools to aid student learning and enhance the
overall learning experience. Surprisingly, FECPs have
not been widely written about in the research literature. A
Polish paper from 2018 may be one of the only papers that
compared and analyzed numerous FECPs [4]. However,
that paper did not analyze how FECPs would be beneficial
in a web programming curriculum. Therefore, the remainder
of this paper will discuss various FECPs, their differences,
and the benefits they provide students (and teachers) in the
classroom. The paper will conclude with an overview of
the practical application of FECPs to the web programming
curriculum.

III. Methods

FECPs are online platforms that not only integrate
HTML, CSS, and JavaScript, but often also include several
related technologies, such as preprocessors, as well as the
ability to import external files or libraries. Behind the scenes,
the FECP’s JavaScript listens for changes to any of the code
windows containing HTML, CSS, or JavaScript. When
code in the code window is changed, the FECP’s JavaScript
analyzes the code and refreshes the output window to make

provide immediate feedback and provide an interactive
sandbox environment where web coding languages can be
practiced and explored. This can be particularly beneficial
for amateur coders to visualize and understand the effect that
each keystroke has on the webpage outcome.

II. Related Studies

Research papers on web programming curriculum from
the early 2010s detail recommended methods [1] as well
as challenges and opportunities [2,3] for teaching web
programming. These studies were conducted around when
the standard for HTML5.1 was officially drafted (2012), and
the standard for CSS 2.1 was officially published (2011).
Since then, both HTML5 and CSS3 have become standard
fixtures in the web programming world. Although these
papers are somewhat dated, they still address many of the
problems that students continue to face when first learning
web programming. Some of these problems include:

1) needing to learn many programming language-
paradigms and technologies in a short time

2) debugging for the web is challenging
3) many common student mistakes produce no output in

the browser

Fig. 1. Example of a webpage built in CodePen.

13 http://JPEE.org

Analysis and Application of Front-End Code Playground Tools for Web Programming Education

8) JSFeed.io[14] (9.3 thousand monthly visits)
These platforms can be classified into one of three

categories based on their level of sophistication and
functionality: low-level, mid-level, and high-level
functionality. Some common features that each platform
includes are code syntax highlighting, multiple coding
windows, a Live Preview window, and the ability to import
files or libraries from elsewhere on the Internet. The low-
level platforms do not include full support for all web
languages or have simplified interfaces that lack the code
formatting, analysis, and preprocessing features included
in mid-level platforms. Mid-level platforms also include
more settings, such as font selection, size, and coloring, and
window refresh rate, among others. High-level platforms
include a ‘social coding’ aspect with a library of open
source, publicly shared code where users can search, share,
like, fork, and comment on their favorite examples. All
platforms include some method to download or export the
code as a ZIP file. Table 1 gives a brief comparison of the
platforms analyzed in this study.

Two notes should be made about the FECPs analyzed
above. First, Coder.com is a “self-hosted remote develop-
ment platform” which means that although it can perform
the same in-browser coding functionality that the other
FECPs can, it first requires installation into a self-hosted
environment. This makes Coder.com impractical for
classroom use. Second, although CSS Deck has been a
very popular code playground in the past, after December
20, 2023, the platform has continually produced 522 server
errors.

the results immediately visible. This benefits learners in at
least two ways.

First, they can get immediate feedback on the effects
of properly written code. Second, because improperly
written code produces no visible output, it helps learners
to reconsider the code they’ve just written and how to
rewrite it to produce the correct results. Additionally, some
of the more advanced FECPs also provide code linting and
syntax checking while code is being input. A small ‘alert’
notification pops up with improperly written code and
can also be beneficial for students to immediately double-
check what they’ve just input. Fig. 1 shows an example of a
webpage designed in CodePen in a classroom setting.

A. Analysis

This paper reviewed and analyzed eight different FECP
platforms and compared their differences. The FECP
platforms in this study were chosen based partially on their
online popularity, such as web traffic, which was provided
by the SimilarWeb traffic analysis Chrome extension [5],
as well as online resources that list such tools, such as
Wikipedia [6]. These platforms include:

1) CodePen.io [7] (10.2 million monthly visits)
2) JS Fiddle [8] (2 million monthly visits)
3) JS Bin[9] (344 thousand monthly visits)
4) Coder.com[10] (224.2 thousand monthly visits)
5) Plunker[11] (209.1 thousand monthly visits)
6) CSS Deck[12] (121.9 thousand monthly visits)
7) Liveweave[13] (62 thousand monthly visits)

Table 1. A comparison of FECP platforms

Platform
Monthly
Visitors

Distinction Access Collaborative Embeddable
Social

(Code Library)
Other

CodePen.io 10.2M High-level Free & Paid Pro Feature Yes Yes HTML, CSS, JS preprocessor support

JS Fiddle 2M Mid-level Free Yes Yes No HAML, CSS, JS preprocessor support

JS Bin 344K Mid-level (low) Free & Paid No No No HTML, CSS, JS preprocessor support

Coder.com* 224.2K Mid-level Free & Paid Yes Yes No
Non-web language support included.

Requires installation.

Plunker 209.1K Mid-level Free Yes No Yes TypeScript, JS library support

CSS Deck 121.9K Mid-level Free No No Yes Offline late 2023

Liveweave 62K Low-level Free Yes No No No preprocessors

JSFeed.io 9.3K High-level Free & Paid Yes Yes Yes HTML, CSS, JS preprocessor support

14

J. Pract. Eng. Educ. 16(1), 11-19, 2024

http://dx.doi.org/10.14702/JPEE.2024.011

indicates that it is growing quite rapidly.
The other FECPs lack one or more of these features and

are therefore classified as mid-level or low-level platforms.
Liveweave was classified as a low-level platform for its lack
of features, particularly the lack of any kind of preprocessor
support. Additionally, although JS Bin lacks many of the
high-level features that were checked, its support of multiple
HTML, CSS, and JavaScript preprocessors bumped its
classification to mid-level, albeit on a lower tier than the
other mid-level FECPs.

The following three tables, Tables 2, 3, and 4 list the
different preprocessors available on each FECP. This type
of language preprocessor integration in FECPs, without a
complicated build process, helps to enable the inclusion of
newer technologies in web programming classes.

B. Application in Education

In general, FECPs enable rapid prototyping and
experimentation when learning web programming concepts.

From among the FECPs analyzed, both CodePen.io and
JSFeed.io were classified as high-level because they include
all the collaborative, embeddable, social, and preprocessor
support that were determined to be high-level features.
CodePen.io, launched in 2012, is one of the oldest FECPs
and is currently the most popular. JSFeed.io, launched in
2022, is the most recently created FECP, and although
currently the least popular, SimilarWeb’s traffic ranking tool

Table 2. HTML preprocessors that are available on different
FECP platforms

Platform
HTML preprocessors

Markdown Haml Slim Pug (Jade)

CodePen O O O O

JS Fiddle X O X X

JS Bin O X X O

Coder.com Dependent on Self-hosted Environment

Plunker X X X X

CSS Deck X O X O

Liveweave X X X X

JSFeed.io O O X O

Table 3. CSS preprocessors that are available on different FECP platforms

Platform
CSS preprocessors

Less SCSS Sass Stylus Myth PostCSS Autoprefixer

CodePen O O O O X O O

JS Fiddle X O O X X O X

JS Bin O O O O O X X

Coder.com Dependent on Self-hosted Environment

Plunker X X X X X X X

CSS Deck O O O O X X X

Liveweave X X X X X X X

JSFeed.io O O O O X X X

Table 4. JavaScript preprocessors that are available on different FECP platforms

Platform
JavaScript preprocesors

CoffeeScript LiveScript TypeScript Babel Traceur ClojureScript

CodePen O O O O X X

JS Fiddle O X O O X X

JS Bin O O O O O O

Coder.com Dependent on Self-hosted Environment

Plunker X X O X X X

CSS Deck O X X O X X

Liveweave X X X X X X

JSFeed.io O O O O X X

15 http://JPEE.org

Analysis and Application of Front-End Code Playground Tools for Web Programming Education

as helping to focus only on a specific portion of code at
one; and 3) code analysis tools, that perform linting such as
syntax and variable checking, which helps students quickly
pinpoint problem areas in their code and debug them. Often
learners do not know specifically where to look to identify
problems in their code, so these types of code formatting,
linting, and analysis tools are highly beneficial. Figures 2, 3,
and 4 display an example of the code analysis tools in each
code window in CodePen.

This paper was written in conjunction with two Web
Programming Fundamentals courses in Fall 2023. Each
course consisted of over 30 students and CodePen was
selected as the FECP.

The first four weeks of the course focused on learning
the basic structuring elements of a webpage using HTML
tags. After each lecture in which new HTML tags were
introduced, the students practiced live coding with the
instructor in CodePen. The primary goal of the HTML
section of the course was to familiarize students with
matching opening and closing HTML tags and properly
indenting code to create an organized HTML document.

This enables learners to immediately begin coding with what
they are learning and aids the learning process by effectively
removing (or postponing) the more confusing and difficult
work of linking files or setting up a build environment.

Additionally, the open-source libraries of many FECPs
contain numerous examples of effective and stylish web
code which enables students to easily search for a certain
component and learn from that code visually. The ability
to ‘fork,’ or copy, a code example also allows students to
modify and experiment with the code on their own. Thus,
learners can practice both the code examples presented in
textbooks, as well as learn from professional code examples.
This kind of ‘social coding,’ or code sharing, along with
other collaborative tools available on high-level FECPs
also provides an easy way for instructors to gather and
grade student assignments. Instructors only need to collect
CodePen IDs from students to have access to all their work.

 Additional features of many FECPs include 1) the ability
to format code, which helps students learn to match opening
and closing tags or curly braces; 2) the ability to fold and
unfold code, which also helps with tag matching, as well

Fig. 2. Example of the HTML analysis tool in CodePen.

16

J. Pract. Eng. Educ. 16(1), 11-19, 2024

http://dx.doi.org/10.14702/JPEE.2024.011

Fig. 3. Example of the CSS analysis tool in CodePen.

Fig. 4. Example of the JavaScript analysis tool in CodePen.

17 http://JPEE.org

Analysis and Application of Front-End Code Playground Tools for Web Programming Education

use front-end libraries such as React, Angular, and Vue. The
fact that these libraries can be used without a build process
or package manager such as yarn or npm makes FECPs
an effective tool to slowly introduce even more advanced
front-end coding concepts and paradigms. If time allows
in the course, the JavaScript section is also a good time to
introduce the various preprocessors available in the FECP
as well as variations or replacements for JavaScript, such as
syntax for ES5 and beyond, TypeScript, CoffeeScript, and so
on. Table 5 gives a brief overview of the key points that were
emphasized and related FECP features that were introduced
in each section of the course.

IV. Results

The analysis and application of FECPs as described in
this paper shows how valuable these tools can be when used
in a web programming curriculum. As described above,
the primary benefits of using a FECP for teaching web
programming fundamentals are as follows.

 First, the all-in-one environment allows students to
quickly learn and code in three languages at once: HTML,
CSS, and JavaScript without the need for managing multiple
files. Additionally, as many FECPs include support for
preprocessors in each language, instructors can introduce
newer coding techniques, paradigms, and languages without
needing to rely on maintaining a complicated build process
or package manager. Since no setup is required for the
coding environment, students can focus their full attention
on the coding itself.

 Second, FECPs provide immediate feedback on code as
it is entered into the coding windows. Additional formatting

To that end, the Format HTML, Analyze HTML, and code
folding tools were introduced and students were presented
with various individual coding challenges to ensure the
course content was learned effectively.

The following six weeks of the course focused on adding
styles to the HTML elements such as colors, layouts, and
effects using CSS. The primary goal of the CSS section of
the course was to provide students with a variety of options
for styling HTML elements. This included the use of inline
styles, CodePen’s built-in internal stylesheet (in the CSS
code window), and importing external CSS files. To that end,
CSS reset and normalize were introduced along with various
external CSS libraries, such as Bootstrap. Additionally, the
concept of web fonts was introduced and both Google Fonts
and icon fonts like FontAwesome were incorporated. In
CodePen, external CSS files can be directly searched for and
imported into a pen’s settings. This process helps students
understand the concept of importing and managing multiple
external files and libraries.

The final five weeks of the course focused on adding
interactive functionality to a webpage using JavaScript.
The primary goal of the JavaScript section of the course
was to introduce students to the concept of the DOM tree
and how JavaScript can be used to manipulate it by adding,
editing, or deleting DOM nodes. To that end, various simple
projects were coded in class that put much of JavaScript’s
language features to use. These projects included a simple
multiplication table using for loops, a slideshow and lightbox
using event listeners, and a simple Todo app that created,
edited, and deleted DOM nodes entirely in JavaScript.

 Due to the limitations of time, only vanilla JavaScript was
introduced in these courses. However, CodePen and similar
FECPs also offer support for larger JavaScript projects that

Table 5. Overview of a course structure that incorporates FECPs in class

Section Objectives Applied knowledge FECP features introduced

HTML
Matching opening / closing tags

Proper indentation of code
Creating web page elements

Format HTML tool
Analyze HTML tool

Code folding feature

CSS
Various options for styling code
Concept of external stylesheets

Modifying colors & images
Introduction of web fonts
Creating webpage layouts

Adding transitions & effects

CSS reset & normalize
Importing external stylesheets & libraries

JavaScript
Manipulating DOM elements
Events, listeners, & functions

Creating & deleting nodes

Functional programming (multiplication tables)
Event loop & listeners (slideshow)

Single-page Web Apps (Todo)

Importing external script libraries &

frameworks
Preprocessors (optional)

18

J. Pract. Eng. Educ. 16(1), 11-19, 2024

http://dx.doi.org/10.14702/JPEE.2024.011

web programming: literature review and proposed guide-
lines,” In 8th International Conference on Web Informa-
tion Systems and Technologies (WEBIST 2012), Porto,
Portugal, pp. 207-212. DOI: 10.5220/0003960902070212.

[2] X. Wang and J. C. McKim, “The opportunities and chal-
lenges to teach web programming in computer science
Curriculum CS2013,” Journal of Computing Sciences
in Colleges, vol. 29, no. 2, pp. 67-78, December 2013.
https://dl.acm.org/doi/10.5555/2535418.2535428.

[3] X. Wang, “Design, develop and teach the second web
programming course in computer science curriculum,”
Journal of Computing Sciences in Colleges, vol. 29, no. 4,
pp. 52-59, April, 2014.

[4] M. Magier and B. Pańczyk, “Comparative analysis of
front-end code playground tools,” Journal of Computer
Sciences Institute, vol. 9, pp. 328-333, December 2018.
DOI: 10.35784/jcsi.705.

[5] Similarweb – Traffic Rank & Website Analysis, (Google
Chrome Extension), https://chromewebstore.google.com/
detail/similarweb-traffic-rank-w/hoklmmgfnpapgjgcpech-
haamimifchmp.

[6] Wikipedia, “Comparison of online source code play-
grounds,” [Online]. Available: https://en.wikipedia.
org/wik i /Compar i son_of_onl ine_source_code_
playgrounds#Online_web_client-side_source_code_play-
grounds

[7] CodePen – Online Code Editor and Front-End Web De-
veloper, [Online]. Available: https://codepen.io/.

[8] JS Fiddle – Code Playground, [Online]. Available: https://
jsfiddle.net/.

[9] JS Bin – Collaborative JavaScript Debugging, [Online].
Available: https://jsbin.com/.

[10] Coder – Your Self-Hosted Remote Development Platform,
[Online]. Available: https://coder.com/.

[11] Plunker – Helping you build the web, [Online]. Available:
https://plnkr.co/.

[12] CSSDeck – Online HTML, CSS, and JS Code Editor
(Sandbox), [Online]. Available: http://cssdeck.com/.

[13] Liveweave – HTML, CSS, and JavaScript demo, [Online].
Available: https://liveweave.com/.

[14] JSFeed – Online Code Editor, [Online]. Available: https://
jsfeed.io/.

and analysis tools help students quickly identify problems
in their code and debug them. These features are highly
beneficial for students who are new to coding because they
often do not know where to begin looking for problems in
malfunctioning code.

Finally, the collaborative tools and social aspects of many
FECPs allow students to learn from other coders, including
professional web developers. Students can search a FECP’s
massive library of functional and stylish web code, ‘fork’ the
code into their own account to edit and learn from it on their
own, or share their own user ID link with others. A student’s
user ID link can also be used by course instructors to have
access to all the student’s coursework for the class.

V. Conclusion

This paper has focused on a comparison of different
FECP platforms and how the use of these platforms can
enhance practical training and educational outcomes in
web programming courses. The free features and open-
source code libraries in the high-level FECPs can aid both
instructors and students in achieving learning objectives.
Additionally, the progressive application of more complex
programming concepts and challenges along with matching
FECP tools and features that can be applied to these coding
challenges can simplify web programming education as well
as motivate students to explore web programming in more
depth on their own. Finally, the code highlighting, linting,
and analysis features in FECPs directly address two of the
major challenges students face when learning programming:
1) that code they write produces no visible outcome, and
2) that they often don’t know where to begin looking to
debug their code. Therefore, it is recommended that FECPs
be incorporated in some aspect into web programming
curriculum, or at least be actively recommended to students
for learning and experimenting with on their own.

References

[1] S. Xinogalos and T. Kaskalis, “The challenges of teaching

19 http://JPEE.org

Analysis and Application of Front-End Code Playground Tools for Web Programming Education

Aaron Daniel Snowberger_Regular members

2006: Bachelor of Science, Dept. of Computer Science, University of Wyoming

2011: Master of Art, Media Design, Full Sail University

2024: Ph.D., Dept. of Information & Communication Engineering, Hanbat National University

2010 – 2023: Professor, Dept. of Liberal Arts, Jeonju University

2023 – present: Lecturer, Dept. of Computer Education, Jeonju National University of Education

<Research interests> Computer Vision, Deep Learning, Natural Language Processing, Language Education

Semin Kim_Lifetime Membership

2006: Master of Science, Dept. of Computer Education, Woosuk University

2009: Ph.D. Candidate, Dept. of Computer Education, Kongju National University

2018: Ph.D., Dept. of Information & Communication Engineering, Hanbat National University

2020: Master of Science, Graduate School of Sports Science, Hoseo University

2008 – present: Lecturer, Dept. of Computer Education, Jeonju National University of Education

<Research interests> Computer Education, SW/AI Education, Sports Information Systems

SungHee Woo_Lifetime Membership

1993: Master of Science, Dept. of Computer Engineering, Chungbuk National University

1999: Ph.D., Dept. of Computer Engineering, Chungbuk National University

1995 – present: Professor, Dept. of Computer Engineering, Korea National University of Transportation

<Research interests> Information Security, Computer Networks, SW/AI Education

