• Title/Summary/Keyword: engine damage

Search Result 274, Processing Time 0.027 seconds

A Study on Improving the Enhanced Durability of Cylinder Liner according to Cavitation Influence of Combat Equipment Engine (전투장비 엔진의 캐비테이션 영향에 따른 실린더 라이너의 내구성 강화 방안에 관한 연구)

  • Kim, Daeun;Lee, Kijung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.1-8
    • /
    • 2021
  • Cylinder liners used in diesel engines of combat equipment are prone to cavitation due to wet cooling. The damage caused by erosion and corrosion due to cavitation has a fatal effect on the performance and lifespan of a diesel engine. Therefore, a study was conducted to improve the durability of cylinder liners. Two surface treatment techniques were proposed: nitriding and chrome plating. It was observed that the amount of erosion on the surface of nitride-treated cylinder liners was high because the surface-treated part eroded due to its weak impact resistance against the bubble explosion generated by cavitation. In contrast, the chrome-plated cylinder liner had a lower amount of erosion among the specimens subjected to the accelerated test. These results verified that the resistance of chrome-plated liners against cavitation is high. Therefore, it can withstand the impact of bubble explosion. If the chrome plating thickness is set with reference to the KS standard, an exceptional durability of abrasion, wear resistance, and corrosion resistance can be obtained. If the thickness is set between 120~250㎛, it is expected that the durability of the cylinder liner can be improved. Although a recovery method for corroded cylinder liners is suggested, the proposed method has an inherent risk of crack generation. Therefore, further research is required to solve this problem.

Study for Failure Examples Involved to Spark Plug Assembling Part Damage, Timing Maladjustment and Alien Substance Insertion in Intake Valve Part on LPG Vehicle Engine (자동차용 LPG 엔진의 점화플러그 장착 부 손상, 점화시기 조정불량, 흡입밸브 부 이물질유입 고장사례 연구)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Kim, Sung Mo;Hwang, Han Sub;Jung, Dong Hwa;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.22-27
    • /
    • 2021
  • This paper is a purpose to study the failure examples for LPG vehicle. The first example, the researcher certified the incongruity phenomenon decreased engine power by ignition fire leakage because of spark plug threaded part damage assembling in cylinder head. The second example, the timing mark that accurately adjusting the camshaft and crankshaft position were twisted about 0.5 block each other. Finally, the researcher seeked the disharmony phenomenon as it couldn't set ignition timing. The third example, the researcher knew the failure phenomenon by interrupted the closing period for intake valve moving with air flow in the number 3 port of cylinder head as the foreign substance in cylinder head didn't remove. Therefore, the manager of a car has to thorough going inspect and the manufacture of a car must remove the cause of failure with quality assurance.

Analysis on the performance and internal flow of a tubular type hydro turbine for vessel cooling system

  • Chen, Zhenmu;Kim, Joo-Cheong;Im, Myeong-Hwan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1244-1250
    • /
    • 2014
  • The temperature of the main engine cabin of commercial vessel is very high. The material SS-316L undergoes creep damage at temperatures exceeding $450^{\circ}C$. It is essential to maintain the highly stressed engine cabin below the creep regime. Hence, seawater is employed in this kind of maritime vehicles as cooling liquid. It obtains the thermal energy at the cooling pipe line after passing through main engine cooling system. To harness the energy in the seawater, a turbine can be installed to absorb the energy in the seawater before being released into the sea. In this study, a cooling pipe line is selected to apply the tubular type hydro turbine for transferring the energy. Numerical analysis for investigating the performance and the internal flow characteristics of the tubular turbine is conducted. The results show that the maximum efficiency of 85.8% is achieved although the efficiency drops rapidly at partial flow rate condition. The efficiency descends slowly at the condition of excess flow rate. There is a relatively wide operating range of flow rate of this turbine to keep high efficiency at the excess flow rate condition. For the internal flow of the turbine, there is uniform streamline on the suction and pressure sides of the blade at the design point. However, the secondary flow appears at the suction and pressure sidesat the excess flow rate.In addition, it appears only at pressure side at the partial flow rate condition.

Development of Vibration Absorption Device for the Transportation-Trailer System(II) - Connecting Hitch for Power Tiller-Trailer - (수송 트레일러의 충격흡수장치 개발(II) - 동력경운기 연결 히치 -)

  • Hong J. H.;Lee H. J.;Lee S. B.;Park W. Y.;Kim S. Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.147-154
    • /
    • 2005
  • The improved hitch device, which connecting the trailer to power tiller, was developed. This device, composed with spring and rubber, could reduce the vibration and shock levels during driven on off-road. The vertical vibration accelerations for the improved hitch device were measured at 6 positions, i.e. engine, hitch, seat, and three points in trailer (front, middle, and rear) for not driving but at low engine speed of 500 rpm, and compared with the existing hitch device. The results of this study could be summarized as follows; The average vibration acceleration up to 120 Hz was $0.4m/s^2$ at engine part, but it was 0.08 and $0.05m/s^2$ at trailer for existing and improved hitch device, respectively. About $38\%$ of average acceleration level could be absorbed for the improved hitch device compared with existing hitch device. The average vibration acceleration up to 40 Hz was reduced to 0.12 and $0.06m/s^2$ at trailer for existing and improved hitch device respectively, showing the reduction effect of $50\%$. The maximum acceleration occurred at up to 20 Hz of low frequency was much higher than total acceleration occurred at up to 120 Hz, which means that much loss or damage could be occurred during transporting of agricultural products on off-road. The portions of average acceleration occurred at up to 20 Hz of low frequency were $27\%\;and\;21\%$ for the existing and improved hitch device, respectively.

Characteristics of Icing Phenomenon on Injector in a Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG엔진 인젝터의 아이싱 특성연구)

  • Kim, C.U.;Oh, S.M.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type(the second generation technology) fuel supply system However. when a liquid LPG fuel is injected into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. This leads to freezing of the moisture in the air around the outlet of a nozzle, which is called icing phenomenon. It may cause damage to the outlet nozzle of an injector or inlet valve seat. In this work, the experimental investigation of the icing phenomenon was carried out The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of air temperature in the inlet duel. Also, it was observed that the total ice formed around the nozzle weighs at about $150mg{\sim}260mg$ after injection for ten minutes. And some fuel species were found in the ice attached at the front side of a nozzle, while frozen ice attached at the back of a nozzle was mostly' consisted of moisture of inlet air. Therefore, some frozen ice deposit. detached from front nozzle of an injector, may cause a problem of unfavorable air fuel ratio control in the small LPLI engine.

  • PDF

A Study on Nonlinear GPA for Optimal Measurement Parameter Selection of Turboprop Engine (터보프롭 엔진의 최적 계측 변수 선정을 위한 비선형 GPA 기법에 관한 연구)

  • 공창덕;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.69-75
    • /
    • 2001
  • Linear GPA(Gas Path Analysis) and non-linear GPA programs for performance diagnostics of a turboprop engine were developed, and a study for selection of optimal measurement variables was performed. Simultaneous faults in the compressor, the compressor turbine and the power turbine, which occur damage of the engine, were assumed. The non-linear GPA analysis was carried out with an iterative method, where the performance degradation rate of independent parameters was divided into same intervals. It was compared with the result by the Newton-Raphson method for observing the effect of an iterative method. According to the analysis result, it was found that performance of non-linear GPA can be influenced on the type of the iterative method. For showing effects of the number of measurement variables both the linear and non-linear GPAs were analyzed with 10, 8 and 6 measurement sets, respectively. RMS error between them were compared each other. It was realized that the more measurement parameters are used, and the more accurate result may be obtained. However much better result can be obtained with measurement parameters selected properly Moreover, RMS error by using non-linear GPA was less than that by using linear GPA.

  • PDF

Study for Failure Examples of Injector, Idle Speed Actuator and Gasket in LPi System Vehicle (LPi 시스템 자동차의 인젝터, 공회전 액추에이터 및 개스킷 고장사례 연구)

  • Lee, Il-Kwon;Cho, Seung-Hyun;Kim, Han-Goo;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.48-53
    • /
    • 2012
  • The purpose of this paper studies the failure cases including with system of liquefied phase injection in liquified petroleum gas vehicle. The first case, resulting with inspection the injector of LPG, it occasionally certified the injection damage phenomenon that the fuel efficiency(km/l) was decreased to 5% by carbon deposit with injector hole when the driver operates the vehicle. The second case, it certified the interference phenomenon of air flow with carbon deposit in ISA system control for idle speed of engine and throttle body suppling air into engine. As a result, the fuel efficiency was decreased 7%. The third case, the outer air during intake stroke was intermittently flowed in this gasket gap because of weaken adhesion power phenomenon for cylinder block by intake manifold gasket tearing. Consequentially, it certified the decrease for fuel efficiency to 3% by risen the amount of fuel injection as the air inflow quantity. These failure examples reduced the power performance of engine and the fuel efficiency of vehicle. It have to minimize of failure phenomenon preparing through quality management.

A Study on Fire Detection in Ship Engine Rooms Using Convolutional Neural Network (합성곱 신경망을 이용한 선박 기관실에서의 화재 검출에 관한 연구)

  • Park, Kyung-Min;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.476-481
    • /
    • 2019
  • Early detection of fire is an important measure for minimizing the loss of life and property damage. However, fire and smoke need to be simultaneously detected. In this context, numerous studies have been conducted on image-based fire detection. Conventional fire detection methods are compute-intensive and comprise several algorithms for extracting the flame and smoke characteristics. Hence, deep learning algorithms and convolution neural networks can be alternatively employed for fire detection. In this study, recorded image data of fire in a ship engine room were analyzed. The flame and smoke characteristics were extracted from the outer box, and the YOLO (You Only Look Once) convolutional neural network algorithm was subsequently employed for learning and testing. Experimental results were evaluated with respect to three attributes, namely detection rate, error rate, and accuracy. The respective values of detection rate, error rate, and accuracy are found to be 0.994, 0.011, and 0.998 for the flame, 0.978, 0.021, and 0.978 for the smoke, and the calculation time is found to be 0.009 s.

Aircraft Fuel Efficiency Improvement and Effect through APMS (APMS 활용을 통한 항공기 연비향상 및 기대효과 )

  • Jae Leame Yoo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.2
    • /
    • pp.81-88
    • /
    • 2023
  • SHM (Structural Health Monitoring) technique for monitoring aircraft structural health and damage, EHM (Engine Health Monitoring) for monitoring aircraft engine performance, and APM (Application Performance Management) is used for each function. APMS (Airplane Performance Monitoring System) is a program that comprehensively applies these techniques to identify the difference between the performance manual provided by the manufacturer and the actual fuel mileage of the aircraft and reflect it in the flight plan. The main purpose of using APMS is to understand the performance of each aircraft, to plan and execute flights in an optimal way, and consequently to reduce fuel consumption. First, it is to check the fuel efficiency trend of each aircraft, check the correlation between the maintenance work performed and the fuel mileage, find the cause of the fuel mileage increase/decrease, and take appropriate measures in response. Second, it is to find the cause of fuel mileage degradation in detail by checking the trends by engine performance and fuselage drag effect. Third, the APMS is to be used in making maintenance work decisions. Through APMS, aircraft with below average fuel mileage are identified, the cause of fuel mileage degradation is identified, and appropriate corrective actions are determined. Fourth, APMS data is used to analyze the economic analysis of equipment installation investment. The cost can be easily calculated as the equipment installation cost, but the benefit is fuel efficiency improvement, and the only way to check this is the manufacturer's theory. Therefore, verifying the effect after installation and verifying the economic analysis is to secure the appropriateness of the investment. Through this, proper investment in fuel efficiency improvement equipment will be made, and fuel efficiency will be improved.

Investigation of Icing Phenomenon in Liquid Phase LPG Injection System (액상분사식 LPG 연료공급방식의 아이싱현상에 관한 연구)

  • Kim, C.U.;Oh, S.M.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system is considered as one of the next generation fuel supply systems for LPG, vehicles, since it can accomplish the higher power, higher efficiency, and lower emission characteristics than the existing mixer type fuel supply system. However, during the injection of liquid LPG fuel into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. A problem is that the moisture in the air freezes around the outlet of a nozzle, which is called icing Phenomenon. It may cause damage to the outlet nozzle of an injector. The frozen ice deposit detached from the nozzle also may cause a considerable damage to the inlet valve or valve seat. In this work, the experimental investigation of the icing phenomenon was carried out. The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of the air temperature in the inlet duct. Also, it was observed that the icing occurs first in the inlet of a nozzle, and grows considerably at the upper part of the nozzle inlet and the opposite side of the nozzle entrance. An LPG fuel, mainly consisting of butane, has lower latent heat of vaporization than that of propane, which is an advantage in controlling the icing phenomenon.

  • PDF