• Title/Summary/Keyword: energy window

Search Result 686, Processing Time 0.025 seconds

A study on the Insulation Performance of the SuperWindow considering the Evaluation of Building Energy Rating (건물에너지효율등급 적용에 따른 초단열 슈퍼윈도우 열성능 평가)

  • Jang, Cheol-Yong;Kim, Chi-Hoon;Ahn, Byung-Lip;Hong, Won-Hwa
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Generally, the building's windows and ventilation for the purpose of mining and the vista and windows by emotional engineering design area is a growing trend.In addition, the building regulation U-value limitation of window is $3.3W/m^2{\cdot}K$ in southern regions, while U-value limitation of wall is $0.35{\sim}0.58W/m^2{\cdot}K$. It means that the energy loss through windows is six times more than it through wall. Therefore, the purpose of this study is to evaluate the environmental performance of the super window system by verification experiment. The results of this study are as follows; 1) The insulation performance of super window system is $1.44\;W/m^2^{\circ}C$ 2) Super Window compared to a normal window reduce heating energy requirements have been 5.3% 3) Compared to a normal window, Super window savings rate was 4.1% lower 4) Building energy efficiency rating was up to 1 rating from 2 rating.

A Study on the Insulation Performance of the Super window considering the evaluation of Building Energy Rating (지역별 건물에너지 효율에 관한 슈퍼윈도우 단열 성능 평가 연구)

  • Jang, Cheol-Yong;Ahn, Byung-Lip;Kim, Chi-Hoon;Hong, Won-Hwa
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.39-44
    • /
    • 2009
  • Entering in the time of high oil price, seriousness of an energy effect sector has given a huge impact and the importance of energy is growing. Especially, building energy occupying 24% of total demand of energy is expected to be possible to reduce energy demand more than other section. To reduce the building energy consumption, this study analyzes function and thermal performance of Super window by heat experimental apparatus. Super window is a 2-track low-e glazing window for high insulation efficiency. By applying the results of this experiment to building energy efficience rating tool, this study compares energy efficiency rates depending on a region.-Jeju, South, Central. And it shows how much does Super window reduce Building energy consumption.

The optimal window system of office buildings considering energy efficiency (에너지 효율로 본 상업용 건물의 적정 창호에 관한 연구)

  • Yoo, Ho-Chun;Oh, Young-Ho;Park, Seung-Kil
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.53-60
    • /
    • 2005
  • The purpose of this study is to improve energy efficiency of windows in office buildings through the evaluation of their heating, cooling and illumination load. Energy efficiency is influenced by window size which is determined at the early stage of building design. The process of this study is as follows. First, energy performance is analysed according to the various rates of windows through computer simulation (ECOTECT). Then, the annual heating, cooling and illuminating loads according to the different window sizes are compared one another. Results indicated that the optimal window size considering energy efficiency is 50% of the surface area. When the window size is 50% of the surface area, annual maintenance expense is also smallest. Since the cost of cooling is larger than that of heating, too low indoor air temperature in summer is unfavorable based on the reasonable annual maintenance expenses.

A Study on Window Type Ventilation System Using IT Technology for Energy Saving in Housing Space (주거공간 내 IT기술 적용 에너지 저감 창호형 환기시스템 연구)

  • Lee, Eun-Hye;Kim, Yong-Seong;Ji, Chung-Gu
    • Journal of the Korean housing association
    • /
    • v.24 no.2
    • /
    • pp.61-68
    • /
    • 2013
  • This study has the purpose to adapt IT technology on Window Type Ventilation System for the energy saving and providing of user-centered comfortable environment. This is Derived a look at the case of the window type ventilation system and researched its IT technology for reducing energy applied to the Green Home. This indicates a solution for the established Window Type Ventilation System which can not be satisfied with user's requirement by proposing Window Type Ventilation System applied to IT technology that makes it control the intelligent, combined indoor environment system and providing information. Also, it shows energy saving efficiency of Window Type Ventilation System applied to IT technology based on the model study, analysing the performance of air-conditioning and ventilation energy saving through the experiment to compare with the established Window Type Ventilation System. The result of this study has the significance that it suggests an alternative for energy saving of housing space.

Prediction of Heating Energy Saving Rate on the Window Type-Focus on the Apartment House (창호 구성 요소에 따른 난방에너지 절감율 예측에 관한 연구-공동주택을 중심으로)

  • Kim, Kyung-Ah;Moon, Hyeun-Jun;Yu, Ki-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.54-61
    • /
    • 2013
  • This is study on the glazing performance of the apartment house to predict energy saving rate when the early design stage by calculating heating load. there are various factors of the window type in apartment building to save energy such as window's U-value, SC or SHGC, window wall ration, frame factor, sunshade coefficient and so on. In this study, we analyzed the heating load focused on the U-value, SC and window wall ration using variable heating degree days method for a small and middle size units $59m^2$, $84m^2$, respectively. Each cases were calculated heating load of the real models compared to standard model to predict energy saving rate. From those cases it was drew the conclusion that were window's U-value, SC and window wall ration for the small and middle size units to expect 10% energy saving rate at least.

Comparative Analysis on the Heating and Cooling Loads Associated with U-value, SHGC and Orientation of the Windows in Different Regions (창호의 열관류율, 일사취득계수와 향의 배치가 건물의 냉난방 부하에 미치는 영향에 관한 지역별 비교연구)

  • Choi, Min-Seo;Chang, Seong-Ju
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • The primary goal of this research is to identify the impacts of window design on the energy use in buildings which takes up about 25% of the total energy consumption. Recently, efficient use of energy is gaining more importance in buildings. Window design, especially being dependent on glazing performance choices, is an important factor for reducing energy consumption in most of the buildings. It also is influenced by the latitude of the site and window orientation. This paper aims at identifying the influence of Window performance indicators(U-value, SHGC), orientation and latitude on the building energy consumption with systematically designed simulations. Comparative study has been performed for five different locations; Greenland, Korea, Singapore, Argentina and Chile along with the different window U-value and SHGC values. The results show that optimum window system with properly coordinated window performance indicators(U-value, SHGC), orientation achieves dramatic reduction of energy consumptions. Windows with low U-value could reduce heating loads and high SHGC could reduce cooling loads. The study also verifies that the windows installed at south facade is more energy efficient in the northern hemisphere while windows facing north is more energy efficient in the southern hemisphere.

Energy Saving Effect and Improvement of Indoor Thermal Environment through the Window Retrofit (창호 리트로피트를 통한 에너지 절감 및 실내 열환경 개선 효과 분석에 관한 연구)

  • Jeong, Jin-Woo;Ju, Jung-Hoon;Cho, Dong-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.3
    • /
    • pp.29-36
    • /
    • 2018
  • The goal of this study is to retrofit the windows of residential buildings and to activate the green remodeling by verifying energy saving and indoor thermal environment. As a result of analysis of the energy saving effect of 458 units window retrofits, it was possible to reduce the energy requirement by 48.20% ~ 54.97%. According to the improvement on indoor environment, it was possible to operate by reducing heating temperature and supply time. The actual gas consumption of the heating period was reduced by 25% compared with that of the window retarder to save 28,968 thousand won of heating energy cost. Resident's satisfaction surveys were conducted one year after window retrofit. More than 80% of the respondents answered that they satisfied the improvement on window performance, indoor thermal environment and indoor sound environment. As a result, we verified the energy saving effect and the improvement on the indoor environment through window retrofits.

The Prediction of Energy Consumption by Window Inclination (창의 기울기에 따른 건축물 에너지 소비량 예측)

  • Cho, Sung-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.27-32
    • /
    • 2011
  • Most of domestic building generally don't have fixed shading devices considering of appearance and aesthetic issues. In this study is suggested that tilt window simultaneously has a role of shading and blocking solar radiation. The tilt window thermal performance is investigated by relation ship between inclination and heating cooling road. As comparing vertical window with $5^{\circ}$ and $7^{\circ}$ of tilt window respectively, the heating load is increased by 3.6% and cooling load is reduced by 8.1% on $5^{\circ}$ tilt window and the heating load is increased by 5.3% and cooling load is reduced by 11.5% on $5^{\circ}$ tilt window. Especially, the total load of alternative tilt window is showed the reduction rate 2.6% and3.6% compared of vertical window. Therefore, the tilt window is possible to role of shading of solar radiation and reduction of heating and cooling load.

The Building Energy Efficiency Rating Evaluation of Apartment depending on SC and Window area ratio (차폐계수와 창면적비에 따른 공동주택의 건물에너지효율등급 평가)

  • Jang, Cheol-Yong;Han, Hye-Sim;Lee, Jin-Sook
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.38-43
    • /
    • 2010
  • Enhancement of exterior's insulation performance like wall or window etc. is general way for building's energy efficient and thermal performance. But exterior's opening plan is important for minimizing the energy consumption and heat loss. In this paper, energy saving rate will be analyzed and compared considering the window area's rate and window's SC(Shading Coefficient) in a apartment with Building Energy Efficiency Rating System's evaluation tool. In the process of evaluation, energy saving rate is measured at each stage of the window area's rate from 20% to 60% every 10% term and the shading coefficient value from 1.0 to 0.6. As a result of this research, energy saving evaluation could not be measured exactly with existing evaluation tool. Accord this research, Building Energy Rating System's evaluation range is needed to be broaden for exact evaluation of energy saving rate.

Energy demand analysis according to window size and performance for Korean multi-family buildings

  • Huh, Jung-Ho;Mun, Sun-Hye
    • Architectural research
    • /
    • v.15 no.4
    • /
    • pp.201-206
    • /
    • 2013
  • Special attention is required for the design of windows due to their high thermal vulnerability. This paper examines the problems that might arise in the application of the u-value, by reflecting the changes in the u-value of the window, depending on the window-to-wall ratio obtained in an energy demand analysis. Research indicates that the u-value of a window increases with an increase in the difference between the u-values of the frames and the glass. Relative to the changes in the u-value of the windows, the energy demand varied from 1.3% to 9.3%. Windows with a g-value of 0.3 or 0.5 displayed a higher energy demand than windows with a g-value of 0.7. Therefore, when the difference between the performance of the glass and the frame is significant, especially when the g-value is small, a modified heat transmission coefficient should be applied to the window size during the evaluation of the building energy demand.