• Title/Summary/Keyword: energy substrates

Search Result 806, Processing Time 0.029 seconds

Study on Magnetic Behavior of Zn1-xMnxO Films Grown on Si and α-Al2O3 Substrates by Sol-gel Method and Powders

  • Kim, Young-Mi;Park, Il-Woo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • We report on the ferromagnetic characteristics of $Zn_{1-x}Mn_xO$ films (x = 0.3) prepared by sol-gel method on the silicon and (0001) ${\alpha}-Al_2O_3$ substrates at the annealing temperature of 700$^{\circ}C$. Magnetic measurements show that Curie temperature ($T_C$) and the coercive field ($H_C$) for the film on the silicon are about 32 K and about 275 Oe, while those for that on the sapphire are about 32 K and 425 Oe, respectively. Energy dispersive spectroscopy and transmission electron microscopy measurements suggest that ferromagnetic precipitates originated by manganese oxide compound formed at the interfaces of the both substrates may be responsible for the observed ferromagnetic behavior of the films. Electron paramagnetic resonance study of the powders up to the concentration of x=0.15 supports the result.

Rapid Thermal Annealing at the Temperature of 650℃ Ag Films on SiO2 Deposited STS Substrates

  • Kim, Moojin;Kim, Kyoung-Bo
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.208-213
    • /
    • 2017
  • Flexible opto-electronic devices are developed on the insulating layer deposited stainless steel (STS) substrates. The silicon dioxide ($SiO_2$) material as the diffusion barrier of Fe and Cr atoms in addition to the electrical insulation between the electronic device and STS is processed using the plasma enhanced chemical vapor deposition method. Noble silver (Ag) films of approximately 100 nm thickness have been formed on $SiO_2$ deposited STS substrates by E-beam evaporation technique. The films then were annealed at $650^{\circ}C$ for 20 min using the rapid thermal annealing (RTA) technique. It was investigated the variation of the surface morphology due to the interaction between Ag films and $SiO_2$ layers after the RTA treatment. The results showed the movement of Si atoms in silver film from $SiO_2$. In addition, the structural investigation of Ag annealed at $650^{\circ}C$ indicated that the Ag film has the material property of p-type semiconductor and the bandgap of approximately 1 eV. Also, the films annealed at $650^{\circ}C$ showed reflection with sinusoidal oscillations due to optical interference of multiple reflections originated from films and substrate surfaces. Such changes can be attributed to both formation of $SiO_2$ on Ag film surface and agglomeration of silver film between particles due to annealing.

The Electrical Properties of Sputtered GDC Thim Film for Solid Oxide Fuel Cells (고체산화물 연료전지 박막의 전기적 특성 연구)

  • Lee, Ki-Seong;Lee, Jai-Moon;Shim, Su-Man;Kim, Dong-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.319-325
    • /
    • 2011
  • The electrical properties of sputtered GDC thin films on $Al_2O_3$ substrates was studied. The electrical properties of the films were measured to evaluate the ion conductivity of GDC thin films for co-planar SOFC electrolytes. The impedance of the GDC thin films on $Al_2O_3$ substrates was affected by the film thickness and the impedance of thin film exhibited higher value than thick films. Similarly, the conductivity of the thick film showed much higher value than thin films. It indicated that the film thickness is the main factor affecting the conductivity and impedance of the GDC electrolyte for the co-planar SOFC.

Numerical Analysis of Heat Flow and Thermal Deformation in Transmission Joining of Polymers Using Nd:YAG Laser (Nd:YAG 레이저를 이용한 폴리머의 투과접합에서 열 유동 및 열 변형 해석)

  • Cha, Sang-Woo;Kim, Jin-Beom;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.24 no.6
    • /
    • pp.28-32
    • /
    • 2006
  • Laser Transmission Joining (LTJ), which is a joining process of polymers by using different transmission rates of materials, was studied numerically. Unlike previous studies, energy loss by reflection at the surface was included. Besides, energy absorbed in the transparent substrate is also considered to increase the accuracy of the analytical results. Furthermore, thermal deformations of the substrates were also calculated. Temperature distribution of the substrates on the joining process could be effectively predicted by using the thermal analysis model developed, which could also analyze the rising phenomenon of the absorbing substrate by bulge effect. Calculated results show that temperature of the absorbing substrate is higher than that of transparent substrate when the laser is being radiated, and this temperature difference causes more thermal deformation in absorbing substrate, which results in the surface rise of the absorbing substrate. Comparison of calculated results with corresponding experimental results could confirm the validity of the numerical analysis model proposed.

Development of charge sensitive amplifiers based on various circuit board substrates and evaluation of radiation hardness characteristics

  • Jeong, Manhee;Kim, Geehyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1503-1510
    • /
    • 2020
  • Ultra-low noise charge sensitive amplifiers (CSAs) based on various types of circuit board substrates, such as FR4, Teflon, and ceramics (Al2O3) with two different designs, PA1 and PA2, have been developed. They were tested to see the noise effect from the dielectric loss of the substrate capacitance before and after irradiation. If the electronic noise from the CSAs is to be minimized and the energy resolution enhanced, the shaping time has to be optimized for the detector, and a small feedback capacitance of the CSA is favorable for a better SNR. Teflon- and ceramic-based PA1 design CSAs showed better noise performance than the FR4-based one, but the Teflon-based PA1 design showed better sensitivity than ceramic based one at a low detector capacitance (<10 pF). In the PA2 design, the equivalent noise and the sensitivity were 0.52 keV FWHM for a silicon detector and 7.2 mV/fC, respectively, with 2 ㎲ peaking time and 0.1 pF detector capacitance. After 10, 100, 103, 104, and 105 Gy irradiation the ENC and sensitivity characteristics of the developed CSAs based on three different substrate materials are also discussed.

Characterization of Fluorocarbon Thin Films by Contact Angle Measurements and AFM/LFM (접촉각 측정과 AFM/LFM을 이용한 불화 유기박막의 특성 평가)

  • 김준성;차남구;이강국;박진구;신형재
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 2000
  • Teflon-like fluorocarbon thin film was deposited on various substrates by vapor deposition using PFDA (perfluorodecanoic acid). The fluorocarbon films were characterized by static/dynamic contact angle analysis, VASE (Variable-angle Spectroscopic Ellipsometry) and AFM/LFM (Atomic/Lateral Force Microscopy). Based on Lewis Acid/Base theory, the surface energy ($S_{E}$) of the films was calculated by the static contact angle measurement. The work of adhesion (WA) between de-ionized water and substrates was calculated by using the static contact data. The fluorocarbon films showed very similar values of the surface energy and work of adhesion to Teflon. All films showed larger hysteresis than that of Teflon. The roughness and relative friction force of films were measured by AFM and LFM. Even though the small reduction of surface roughness was found on film on $SiO_2$surface, the large reduction of relative friction farce was observed on all films. Especially the relative friction force on TEOS was decreased a quarter after film deposition. LFM images showed the formation of "strand-like"spheres on films that might be the reason far the large contact angle hysteresis.

  • PDF

Laser Sintering of Silver Nanoparticle for Flexible Electronics (유연소자 응용을 위한 은 나노입자의 레이저 소결)

  • Jia, Seok Young;Park, Won Tea;Noh, Yong-Young;Chang, Won Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.135-139
    • /
    • 2015
  • We present a fine patterning method of conductive lines on polyimide (PI) and glass substrates using silver (Ag) nanoparticles based on laser scanning. Controlled laser irradiation can realize selective sintering of conductive ink without damaging the substrate. Thus, this technique easily creates fine patterns on heat-sensitive substrates such as flexible plastics. The selective laser sintering of Ag nanoparticles was managed by optimizing the conditions for the laser scan velocity (1.0-20 mm/s) and power (10-150 mW) in order to achieve a small gap size, high electrical conductivity, and fine roughness. The fabricated electrodes had a minimum channel length of $5{\mu}m$ and conductivity of $4.2{\times}10^5S/cm$ (bulk Ag has a conductivity of $6.3{\times}10^5S/cm$) on the PI substrate. This method was used to successfully fabricate an organic field effect transistor with a poly(3-hexylthiophene) channel.

A Study on Misfit Dislocation Generation in InAs Epilayers Grown on InP Substrates by Metalorganic Chemical-Vapor Deposition (MOCVD방법으로 InP 기판 위에 성장시킨 InAs 박막에서의 부정합 전위 생성 연구)

  • Kim, Jwa-Yeon;Yun, Eui-Jung;Park, Kyeong-Soon
    • Applied Microscopy
    • /
    • v.27 no.4
    • /
    • pp.483-488
    • /
    • 1997
  • A misfit dislocation generation in InAs epilayers grown on (001) InP substrates (oriented $2^{\circ}$ off (001) toward the [110] direction) using metalorganic chemical-vapor deposition was studied. The InAs film of 17 nm thickness grown at $405^{\circ}C$ showed the three different arrays of dislocations: a straight orthogonal array to the <110> direction, an array to the >100> direction, and an array tilted by a degree of $5\sim45^{\circ}$ from the [110] direction. All of the dislocations had a/2<101> Burgers vectors inclined $45^{\circ}$ to the interface. Upon annealing at $660^{\circ}C$ the InAs films with 60, 140 and 220 nm thicknesses, most of the misfit dislocations became the Lomer type $(\sim100%)$ oriented exactly along the >110> direction. These misfit dislocation spacings were decreased with increasing the InAs thickness up to 220 nm thickness. This phenomena was interpreted by the relationship between the dislocation interaction energy among parallel misfit dislocations and the opposite remnant InAs epilayer strain energy. The distance between misfit dislocations was measured by transmission electron microscopy.

  • PDF

Synthesis of Au Nanowires Using S-L-S Mechanism (S-L-S 성장기구를 이용한 양질의 골드 나노선 합성)

  • No, Im-Jun;Kim, Sung-Hyun;Shin, Paik-Kyun;Cho, Jin-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.922-925
    • /
    • 2012
  • Single crystalline Au nanowires were successfully synthesized in a tube-type furnace. The Au nanowires were grown by vapor phase synthesis technique using solid-liquid-solid (SLS) mechanism on substrates of corning glass and Si wafer. Prior to Au nanowire synthesis, Au thin film served as both catalyst and source for Au nanowire was prepared by sputtering process. Average length of the grown Au nanowires was approximately 1 ${\mu}m$ on both the corning glass and Si wafer substrates, while the diameter and the density of which were dependent on the thickness of the Au thin film. To induce a super-saturated states for the Au particle catalyst and Au molecules during the Au nanowire synthesis, thickness of the Au catalyst thin film was fixed to 10 nm or 20 nm. Additionally, synthesis of the Au nanowires was carried out without introducing carrier gas in the tube furnace, and synthesis temperature was varied to investigate the temperature effect on the resulting Au nanowire characteristics.

A Study on the Ink Transfer Using the Roughness and Substrate Energy of Substrate in Roll to Roll Printing Systems (롤투롤 인쇄 시스템에서의 기판 소재의 거칠기와 표면에너지를 이용한 잉크 전이에 대한 연구)

  • Shin, Kee-Hyun;Kim, Ho-Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.103-109
    • /
    • 2010
  • An ink transfer is modeled and experimentally verified using roll-to-roll electric direct gravure printing process. The ink transfer model based on the physical mechanism for the maximum ink transfer rate is proposed, and experimented by the electric printing machine in FDRC for the relations of the maximum ink transfer rates to the printing pressure, the operating speed, the operating tension, the surface roughness of substrates, and the contact angle between substrate and silver ink. The free ink split coefficient and immobilized ink under the maximum ink transfer rate are calculated by the physical parameter in a printing process and contact angle between substrates and ink. Numerical simulations and experimental studies were carried out to verify performances of the proposed ink transfer model. Results showed that the proposed ink transfer model was effective for the prediction of the amount of transferred ink to the substrate in a direct gravure printing systems.