Browse > Article
http://dx.doi.org/10.5757/ASCT.2017.26.6.208

Rapid Thermal Annealing at the Temperature of 650℃ Ag Films on SiO2 Deposited STS Substrates  

Kim, Moojin (Department of Renewable Energy, Jungwon University)
Kim, Kyoung-Bo (Department of Metallurgical & Materials Engineering, Inha Technical College)
Publication Information
Applied Science and Convergence Technology / v.26, no.6, 2017 , pp. 208-213 More about this Journal
Abstract
Flexible opto-electronic devices are developed on the insulating layer deposited stainless steel (STS) substrates. The silicon dioxide ($SiO_2$) material as the diffusion barrier of Fe and Cr atoms in addition to the electrical insulation between the electronic device and STS is processed using the plasma enhanced chemical vapor deposition method. Noble silver (Ag) films of approximately 100 nm thickness have been formed on $SiO_2$ deposited STS substrates by E-beam evaporation technique. The films then were annealed at $650^{\circ}C$ for 20 min using the rapid thermal annealing (RTA) technique. It was investigated the variation of the surface morphology due to the interaction between Ag films and $SiO_2$ layers after the RTA treatment. The results showed the movement of Si atoms in silver film from $SiO_2$. In addition, the structural investigation of Ag annealed at $650^{\circ}C$ indicated that the Ag film has the material property of p-type semiconductor and the bandgap of approximately 1 eV. Also, the films annealed at $650^{\circ}C$ showed reflection with sinusoidal oscillations due to optical interference of multiple reflections originated from films and substrate surfaces. Such changes can be attributed to both formation of $SiO_2$ on Ag film surface and agglomeration of silver film between particles due to annealing.
Keywords
Ag agglomeration; Silicon dioxide; Rapid thermal annealing; Stainless steel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. M. Kim, D. Y. Ku, K. S. Lee, and B. Cheong, Effect of oxygen content and deposition temperature on the characteristics of thin silver films deposited by magnetron sputtering, Appl. Surf. Sci. 257 1, 1331 (2010).   DOI
2 P. Asanithi, S. Chaiyakun, and P. Limsuwan, Growth of Silver Nanoparticles by DC Magnetron Sputtering, J. Nanomater. 2012, 963609 (2012).
3 J. Zuo, Deposition of Ag nanostructures on $TiO_{2}$ thin films by RF magnetron sputtering, Appl. Surf. Sci. 256, 7096 (2010).   DOI
4 K. S. Lee, J. W. Shin, J. H. Park, J. H. Lee, C. W. Joo, J. I. Lee, D. H. Cho, J. T. Lim, M. C. Oh, B. K. Ju, and J. H. Moon, A Light Scattering Layer for Internal Light Extraction of Organic Light-Emitting Diodes Based on Silver Nanowires, ACS Appl. Mater. Interfaces 8, 17409 (2016).   DOI
5 G. H. Jin, S.M. Choi, M. J. Kim, S. C. Kim, and J. H. Song, New Pixel Circuit Design Employing an Additional Pixel Line Insertion in AMOLED Displays Composed by Excimer Laser-Crystallized TFTs, J. Display Technol. 8, 479 (2012).   DOI
6 J. Kratochvil, A. Kuzminova, O. Kylian, and H. Biederman, Comparison of magnetron sputtering and gas aggregation nanoparticle source used for fabrication of silver nanoparticle films, Surf. Coat. Technol. 275, 296 (2015).   DOI
7 C. Charton and M. Fahland, Optical and electrical properties of sputtered Ag films on PET webs, Surf. Coat. Technol. 142-144, 175 (2001).   DOI
8 J. Lv, Effect of wettability on surface morphologies and optical properties of Ag thin films grown on glass and polymer substrates by thermal evaporation, Appl. Surf. Sci. 273, 215 (2013).   DOI
9 A. Inberg, P. Livshits, Z. Zalevsky, and Y. Shacham-Diamand, Electroless deposition of silver thin films on gold nanoparticles catalyst for micro and nanoelectronics applications, Microelectron. Eng. 98, 570 (2012).   DOI
10 A. J. Varkey and A. F. Fort, Some optical properties of silver peroxide (AgO) and silver oxide ($Ag_2O$) films produced by chemical-bath deposition, Sol. Energy Mater. Sol. Cells 29, 253 (1993).   DOI
11 B. E. BreyfogIe, C. J. Hung, M. G. Shumsky, and J. A. Switzer, Electrodeposition of silver(II) oxide films, J. Electrochem. Soc. 143, 2741 (1996).   DOI
12 W. Wu, M. Wu, Z. Sun, G. Li, Y. Ma, X. Liu, X. Wang, and X. Chen, Morphology controllable synthesis of silver nanoparticles: Optical properties study and SERS application, J. Alloys and Comp. 579, 117 (2013).   DOI
13 S. B. Rivers, G. Bernhardt, M. W. Wright, D. J. Frankel, M. M. Steeves, and R. J. Lad, Structure, conductivity, and optical absorption of $Ag_{2-x}O$ films, Thin Solid Films 515, 8684 (2007).   DOI
14 F. X. Bock, T. M. Christensen, S. B. Rivers, L. D. Doucette, and R. J. Lad, Growth and structure of silver and silver oxide thin films on sapphire, Thin Solid Films 468, 57 (2004).   DOI
15 Y. Suzuki, Y. Ojima, Y. Fukui, H. Fazyia, and K. Sagisaka, Post-annealing temperature dependence of infrared absorption enhancement of polymer on evaporated silver films, Thin Solid Films 515 (5), 3073 (2007).   DOI
16 J. S. Cho, J. S. Yoo, J. H. Park, K. S. Shin, and K. H. Yoon, Fabrication of dc sputtered Ag/Al:Si bilayers with improved optical reflectance, Thin Solid Films 529 (2013) 45-49.   DOI
17 H. Nakashima, Y. Sasaki, R. Osozawa, Y. Kon, H. Nakazawa, and Y. Suzuki, Surface enhanced infrared absorption spectra on pulsed laser deposited silver island films, Thin Solid Films 536, 166 (2013).   DOI
18 R. Krajcar, J. Siegel, P. Slepicka, P. Fitl, and V. Svorcik, Silver nanowires prepared on PET structured by laser irradiation, Mater. Lett. 117, 184 (2014).   DOI
19 L. S. Kibis, A. I. Stadnichenko, E. M. Pajetnov, S. V. Koscheev, V. I. Zaykovskii, and A. I. Boronin, The investigation of oxidized silver nanoparticles prepared by thermal evaporation and radio-frequency sputtering of metallic silver under oxygen, Appl. Surf. Sci. 257, 404 (2010).   DOI
20 M. J. Kim, K. B. Kim, D. Y. Lee, S. N. Lee, and J. M. Lee, Effects of rapid thermal annealing for E-beam evaporated Ag films on stainless steel substrates, Surf. Coat. Technol. 278, 18 (2015).   DOI
21 A. K. Santra, B. K. Min, and D. W. Goodman, Ag clusters on ultra-thin, ordered $SiO_2$ films, Surf. Sci. 515, L475 (2002).   DOI
22 A. Toneva, Ts. Marinova, and V. Krastev, XPS investigation of a-Si:H thin films after light soaking, J. Lumin. 80, 455 (1999).
23 R. Yu, T. Shibayama, X. Meng, S. Takayanagi, Y. Yoshida, S. Yatsu, and S. Watanabe, Effects of nanosecond-pulsed laser irradiation on nanostructure formation on the surface of thin Au films on $SiO_2$ glass substrates, Appl. Surf. Sci. 289, 274 (2014).   DOI
24 F. M .F. de Groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, and H. Petersen, Oxygen 1s x-ray-absorption edges of transition-metal oxides, Phys. Rev. B 40, 5715 (1989).   DOI
25 T. Shedel-Niedrig, X. Bao, M. Muhler, and R. Schlogl, Surface-Embedded Oxygen: Electronic Structure of Ag(111) and Cu(poly) Oxidised at Atmospheric Pressure, Ber. Bunsenges. Phys. Chem. 101, 994 (1997).   DOI
26 M. A. M. Hassan, I. R. Agool, and L. M. Raoof, Silver oxide nanostructure prepared on porous silicon for optoelectronic application, Appl. Nanosci. 4, 429 (2014).   DOI
27 M. W. Allen, S. M. Durbin, and J. B. Metson, Silver oxide Schottky contacts on n-type ZnO, Appl. Phys. Lett. 91, 053512 (2007).   DOI
28 H. K. Kim, T. Y. Seong, K. K. Kim, S. J. Park, Y. S. Yoon, and I. Adesida, Mechanism of Nonalloyed Al Ohmic Contacts to n-Type ZnO:Al Epitaxial Layer, Jpn. J. Appl. Phys. 43, 976 (2004).   DOI
29 J. F. Pierson, D. Wiederkehr, and A. Billard, Reactive magnetron sputtering of copper, silver, and gold, Thin Solid Films 478, 196 (2005).   DOI
30 J. F. Pierson and C. Rousselot, Stability of reactively sputtered silver oxide films, Surf. Coat. Technol. 200, 276 (2005).   DOI
31 U. K. Barik, S. Srinivasan, C. L. Nagendra, and A. Subrahmanyam, Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen, Thin Solid Films 429, 129 (2003).   DOI
32 J. Lin, H. Lan, W. Zheng, Y. Qu, and F. Lai, Silver nanoparticles films deposited on AAO templates by thermal evaporation for surface-enhanced Raman scattering of R6G, Nano 07, 1250048 (2012).   DOI
33 R. Krajcar, J. Siegel, P. Slepicka, P. Fitl, and V. Svorcik, Silver nanowires prepared on PET structured by laser irradiation, Mater. Lett. 117, 184 (2014).   DOI
34 J. S. Cho, J. S. Yoo, J. H. Park, K. S. Shin, and K. H. Yoon, Fabrication of dc sputtered Ag/Al:Si bilayers with improved optical reflectance, Thin Solid Films 529, 45 (2013).   DOI
35 M. Maqbool, T. Khan, Atomic force microscopy and XRD analysis of silver films deposited by thermal evaporation, Int. J. Mod. Phys. B 20, 217 (2006).   DOI
36 D. R. Sahu, S. Y. Lin, and J. L. Huang, Study on the electrical and optical properties of Ag/Al-doped ZnO coatings deposited by electron beam evaporation, Appl. Surf. Sci. 253, 4886 (2007).   DOI
37 S. Kundu, S. Hazra, S. Banerjee, M. K. Sanyal, S. K. Mandal, S. Chaudhuri, and A. K. Pa, Morphology of thin silver film grown by dc sputtering on Si(001), J. Phys. D: Appl. Phys. 31, L73 (1998).   DOI
38 Y. Jing, H. Wang, J. Zhao, H. Yi, and X. Wang, Pulsed laser deposition of Ag nanoparticles on titanium hydroxide/oxide nanobelt arrays for highly sensitive surface-enhanced Raman spectroscopy, Appl. Surf. Sci. 347, 499 (2015).   DOI
39 Z. Yuan, N.H. Dryden, J.J. Vittal, R.J. Puddephatt, Chemical vapor deposition of silver, Chem. Mater. 7, 1696 (1995).   DOI
40 R. Sivasubramanian and M. V. Sangaranarayanan, Electrodeposition of silver nanostructures: from polygons to dendrites, Cryst. Eng. Comm. 15, 2052 (2013).   DOI