• Title/Summary/Keyword: energy resolution

Search Result 1,083, Processing Time 0.032 seconds

Design and Performance Evaluation of Small Size Counting and Imaging Gamma Probe System (소형 계수용 및 영상용 감마프로브 시스템의 설계와 성능평가)

  • Yang, Myo-Geun;Kwark, Cheol-Eun;Sim, yong-Geol;Kim, Hee-Joung;Choi, Yong;Chung, Jung-Key;Lee, Myung-Chul;Koh, Chang-Soon
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.291-299
    • /
    • 1997
  • As a microimaging device detecting gamma rays emitted from small lesions or tumors during operation, the intraoperative surgical probe has been proposed and is now under development. We have designed a multipurpose portable gamma prove system and evaluated the performance both for the absolute counting purpose of residual radioactivities and for the localizing capability of gamma events using the NaI(Tl) crystal and two types of photomultiplier tubes(PMTs). Counting efficiencies in the range of routine clinical use of radiation dose were measured using the assembly of single channel PMTs and 0.5 inch thick NaI(Tl) crystal of 1 inch diameter. The positioning of gamma events for imaging purpose requires the multiple channel PMTs with appropriate positioning electronics. We have designed a simple and reliable positioning circuit based on the concept of modified Anger. In preliminary experiments using the multiple channel PMT of 3 inch diameter and the dim lighth source, we were able to trace and localize the correct position with reduced positioning error by the use of two multiplier/divider chipset and simplified peripherals. The energy resolutions for the counting gamma probe measured as full width at half maximum(FWHM) for Cs-137, F-18, Tc-99m were 12%, 13%, and 36%, respectively. The spatial resolution for the imaging gamma probe measured as FWHM for green LED was 2.9 mm. The results indicate that the currently developing probe is very promising and could be very useful for many applications in nuclear medicine. Future studies will include developing collimators, improving interface hardwares, and evaluating the system with clinical data.

  • PDF

Effects on Patient Exposure Dose and Image Quality by Increasing Focal Film Distance in Abdominal Radiography (복부 일반촬영시 초점-필름간거리 변화가 피폭선량 및 화질에 미치는 영향)

  • Kim, You-Hyun;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.52-58
    • /
    • 1998
  • We can and must improve the diagnostic images using available knowledge and technology. At the same time we must strive to reduce the patient's integral and entrance radiation dose. Reducing the integral dose to the patient during the radiologic procedure is a primary concern of the patient, especially the pediatric patient, the radiologist and the technologist. A 100cm focal film distance generally is used for most over-table radiography. The early x-ray tubes and screen film combinations required long exposures, which often resulted in motion artifacts. But nowaday, we have the generators and x-ray tubes that can deliver the energy necessary in a very short time and the receptors that can record the information just as rapidly. And, we performed this studies to evaluate the patient exposure dose and the image quality by increasing focal film distance in diagnostic radiography. There are many factors which affected to exposure factor, but we studied to verify of FFD increase, only. Effect of increasing the focal film distance to a 140 cm distance was tested as follows; 1. The focal film distances were set at 100, 120, and 140cm. 2. A 18cm acryl(tissue equivalent) phantom was placed on the table top. 3. An Capintec 192 electrometer with PM 05 ion chamber was placed at the entrance surface of the phantom, and exposure were made at each focal film distances. 4. The procedure was repeated in the same manner as above except the ion chamber was placed beneath the phantom at the film plane. 5. Exit exposure were normalize to 8mR for each portions of the experiment. Based on the success of the empirical measurements, a detailed mathematical analysis of the dose reduction was performed using the percent depth dose data. The results of this study can be summerized as followings ; 1) Increasing FFD from 100 cm to 140 cm, we would create a situation that would have a significant effect on the overall quality of radiograph and achive the 17.42% reduction of entrance dose and the 18.95% reduction of integral dose that the patient receives. 2) Thickness of Al step wedge for equal film density increased with the long distance. 3) Increasing FFD, Magnification of image was lowered. 4) Resolution of image also increased with the FFD. As the results described above, we strongly recommend using the long FFD to provide better information for our patients and profession in abdomen radiographic studies.

  • PDF

Application of Relative Gravity Surveying and Modeling to Sinkhole Detection (싱크홀 탐지를 위한 상대중력측량과 중력모델링 기법의 활용)

  • Kim, Jinsoo;Lee, Young-Cheol;Lee, Jung-Mo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • The purpose of this research was to develop and present methods to detect sinkholes which can exist underneath the surface of the ground. First, we buried a water tank with dimensions $1.8{\times}0.8{\times}0.8m$ at a distance of 1.8 m from the surface. This played the role of the sinkhole. Secondly, we created a square zone with sides 12 meters away from the buried water tank. Within this zone, we measured the gravity at 1-meter intervals using a Scintrex CG5 relative gravimeter with a resolution of 0.001 mGal. Additionally, we performed three-dimensional (3-D) gravity modeling to calculate the theoretical values of the relative gravity around our model sinkhole. The resulting values for the relative gravity around the sinkhole depended on the method used. The measured effect of gravity was 0.036 mGal and the effect calculated using 3-D modeling was 0.024 mGal. Our results suggest that sinkholes that are similar in size to the water tank used in this study can be detected using relative gravity surveys. Smaller sinkholes can be detected by reducing the intervals between the relative gravity measurements.

Surface state Electrons as a 2-dimensional Electron System

  • Hasegawa, Yukio
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.156-156
    • /
    • 2000
  • Recently, the surface electronic states have attracted much attention since their standing wave patterns created around steps, defects, and adsorbates on noble metal surfaces such as Au(111), Ag(110), and Cu(111) were observed by scanning tunneling microscopy (STM). As a typical example, a striking circular pattern of "Quantum corral" observed by Crommie, Lutz, and Eigler, covers a number of text books of quantum mechanics, demonstrating a wavy nature of electrons. After the discoveries, similar standing waves patterns have been observed on other metal and demiconductor surfaces and even on a side polane of nano-tubes. With an expectation that the surface states could be utilized as one of ideal cases for studying two dimensionakl (sD) electronic system, various properties, such as mean free path / life time of the electronic states, have been characterized based on an analysis of standing wave patterns, . for the 2D electron system, electron density is one of the most importnat parameters which determines the properties on it. One advantage of conventional 2D electron system, such as the ones realized at AlGaAs/GaAs and SiO2/Si interfaces, is their controllability of the electrondensity. It can be changed and controlled by a factor of orders through an application of voltage on the gate electrode. On the other hand, changing the leectron density of the surface-state 2D electron system is not simple. On ewqy to change the electron density of the surface-state 2D electron system is not simple. One way to change the electron density is to deposit other elements on the system. it has been known that Pd(111) surface has unoccupied surface states whose energy level is just above Fermi level. Recently, we found that by depositing Pd on Cu(111) surface, occupied surface states of Cu(111) is lifted up, crossing at Fermi level around 2ML, and approaches to the intrinsic Pd surface states with a increase in thickness. Electron density occupied in the states is thus gradually reduced by Pd deposition. Park et al. also observed a change in Fermi wave number of the surface states of Cu(111) by deposition of Xe layer on it, which suggests another possible way of changing electron density. In this talk, after a brief review of recent progress in a study of standing weaves by STM, I will discuss about how the electron density can be changed and controlled and feasibility of using the surface states for a study of 2D electron system. One of the most important advantage of the surface-state 2D electron system is that one can directly and easily access to the system with a high spatial resolution by STM/AFM.y STM/AFM.

  • PDF

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

Rainfall Intensity Estimation Using Geostationary Satellite Data Based on Machine Learning: A Case Study in the Korean Peninsula in Summer (정지 궤도 기상 위성을 이용한 기계 학습 기반 강우 강도 추정: 한반도 여름철을 대상으로)

  • Shin, Yeji;Han, Daehyeon;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1405-1423
    • /
    • 2021
  • Precipitation is one of the main factors that affect water and energy cycles, and its estimation plays a very important role in securing water resources and timely responding to water disasters. Satellite-based quantitative precipitation estimation (QPE) has the advantage of covering large areas at high spatiotemporal resolution. In this study, machine learning-based rainfall intensity models were developed using Himawari-8 Advanced Himawari Imager (AHI) water vapor channel (6.7 ㎛), infrared channel (10.8 ㎛), and weather radar Column Max (CMAX) composite data based on random forest (RF). The target variables were weather radar reflectivity (dBZ) and rainfall intensity (mm/hr) converted by the Z-R relationship. The results showed that the model which learned CMAX reflectivity produced the Critical Success Index (CSI) of 0.34 and the Mean-Absolute-Error (MAE) of 4.82 mm/hr. When compared to the GeoKompsat-2 and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) rainfall intensity products, the accuracies improved by 21.73% and 10.81% for CSI, and 31.33% and 23.49% for MAE, respectively. The spatial distribution of the estimated rainfall intensity was much more similar to the radar data than the existing products.

Study on the Estimation of leaf area index (LAI) of using UAV vegetation index and Tree Height data (UAV 식생지수 및 수고 자료를 이용한 엽면적지수(LAI) 추정 연구)

  • MOON, Ho-Gyeong;CHOI, Tae-Young;KANG, Da-In;CHA, Jae-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.158-174
    • /
    • 2018
  • The leaf area index (LAI) is a major factor explaining the photosynthesis of vegetation, evapotranspiration, and energy exchange between the earth surface and atmosphere, and there have been studies on accurate and applicable LAI estimation methods. This study aimed to investigate the relationship between the actual LAI data, UAV image-based vegetation index, canopy height and satellite image (Sentinel-2) LAI and to present an effective LAI estimation method using UAV. As a result, among the six vegetation indices in this study, NDRE ($R^2=0.496$) and CIRE ($R^2=0.443$), which contained red-edge band, showed a high correlation. The application of the canopy height model data to the vegetation index improved the explanatory power of the LAI. In addition, in the case of NDVI, the saturation problem caused by the linear relationship with LAI was addressed. In this study, it was possible to estimate high resolution LAI using UAV images. It is expected that the applicability of such data will be improved if calibration and correction steps are carried out for various vegetation and seasonal images.

Production and Accuracy Analysis of Topographic Status Map Using Drone Images (드론영상을 이용한 지형 현황도 제작 및 정확도 분석)

  • Kim, Doopyo;Back, Kisuk;Kim, Sungbo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.2
    • /
    • pp.35-39
    • /
    • 2021
  • Photogrammetry using drone can produce high-resolution ortho image and acquire high-accuracy 3D information, which is useful. Therefore, this study attempted to determine the possibility of using drone-photogrammetry in park construction by producing a topographic map using drone-photogrammetry and analyzing the problems and accuracy generated during production. For this purpose, we created ortho image and DSM (digital surface model) using drone images and created topographic status map by vectorizing them. Accuracy was compared based on topographic status map by GPS (global positioning system) and TS (total station). The resulting of analyzing mean of the residuals at check points showed that 0.044 m in plane and 0.066 m in elevation, satisfying the tolerance range of 1/1,000 numerical maps, and result of compared lake size showed a difference of about 4.4%. On the other hand, it was difficult to obtain accurate height values for terrain in which existed vegetation when producing the topographic map, and in the case of underground buried objects, it is not possible to confirm it in the image, so direct spatial information acquisition was necessary. Therefore, it is judged that the topographic status map using drone photogrammetry can be efficiently constructed if direct spatial data acquisition is achieved for some terrain.

Hexagonal shape Si crystal grown by mixed-source HVPE method (혼합소스 HVPE 방법에 의해 성장된 육각형 Si 결정)

  • Lee, Gang Seok;Kim, Kyoung Hwa;Park, Jung Hyun;Kim, So Yoon;Lee, Ha Young;Ahn, Hyung Soo;Lee, Jae Hak;Chun, Young Tea;Yang, Min;Yi, Sam Nyung;Jeon, Injun;Cho, Chae Ryong;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.103-111
    • /
    • 2021
  • Hexagonal shape Si crystals were grown by the mixed-source hydride vapor phase epitaxy (HVPE) method of mixing solid materials such as Si, Al and Ga. In the newly designed atmospheric pressure mixed-source HVPE method, nuclei are formed by the interaction between GaCln, AlCln and SiCln gases at a high temperature of 1200℃. In addition, it is designed to generate a precursor gas with a high partial pressure due to the rapid reaction of Si and HCl gas. The properties of hexagonal Si crystals were investigated through scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution X-ray diffraction (HR-XRD), and Raman spectrum. From these results, it is expected to be applied as a new material in the Si industry.

Two Views on the Oriental Peace of Modern Era - Focusing An, Joonggeun and Park, Youngcheol (근대시기 동양평화에 대한 두 시각 - 안중근과 박영철을 중심으로 -)

  • Oh, Jai-whan;Gu, Sa-whae
    • (The)Study of the Eastern Classic
    • /
    • no.41
    • /
    • pp.249-273
    • /
    • 2010
  • Both An, Joonggeun and Park, Youngcheol lived in similar innovative time period from the enlightenment times through the Japanese colonial era. Even though they had the same resolution to pour their energy on national sovereignty and oriental peace, their opinions and activities were contrary. While An aimed the gun at the heart of Japanese imperialism with the belief that Japanses empire hindered Korea's independence and the Oriental Peace, Park willingly joined the heart of the imperialism with the belief that Japan could enhance Korean civilization and the Oriental peace. They had commonly developed their visions about oriental peace on the basis of the theory of social evolution focusing on the survival of the fittest and the weak-to-the-wall kind of society that had been prevalent since 19th century. Furthermore, their logics were based on racism combined with the social evolution theory. Although the two men lived in the same era, their spirit of the times were quite different. An considered that the Japanese extortion of Korean sovereignty caused the corruption of peace of the East. On the other hand, Park believed that peaceful age came by way of the Greater East Asia Co-Prosperity constructed by the union of Korea and Japan. Especially Park put higher value on Japanese modern civilization than Korean sovereignty and also insisted Korea should take Japanese case as its model.