DOI QR코드

DOI QR Code

Application of Relative Gravity Surveying and Modeling to Sinkhole Detection

싱크홀 탐지를 위한 상대중력측량과 중력모델링 기법의 활용

  • Kim, Jinsoo (Department of Spatial Information Engineering, Pukyong National University) ;
  • Lee, Young-Cheol (The Center for High Energy Physics, Kyungpook National University) ;
  • Lee, Jung-Mo (Department of Geology, Kyungpook National University)
  • 김진수 (부경대학교 공간정보시스템공학과) ;
  • 이영철 (경북대학교 고에너지물리연구소) ;
  • 이정모 (경북대학교 지질학과)
  • Received : 2017.06.02
  • Accepted : 2017.06.07
  • Published : 2017.06.30

Abstract

The purpose of this research was to develop and present methods to detect sinkholes which can exist underneath the surface of the ground. First, we buried a water tank with dimensions $1.8{\times}0.8{\times}0.8m$ at a distance of 1.8 m from the surface. This played the role of the sinkhole. Secondly, we created a square zone with sides 12 meters away from the buried water tank. Within this zone, we measured the gravity at 1-meter intervals using a Scintrex CG5 relative gravimeter with a resolution of 0.001 mGal. Additionally, we performed three-dimensional (3-D) gravity modeling to calculate the theoretical values of the relative gravity around our model sinkhole. The resulting values for the relative gravity around the sinkhole depended on the method used. The measured effect of gravity was 0.036 mGal and the effect calculated using 3-D modeling was 0.024 mGal. Our results suggest that sinkholes that are similar in size to the water tank used in this study can be detected using relative gravity surveys. Smaller sinkholes can be detected by reducing the intervals between the relative gravity measurements.

본 연구는 지표면 아래 존재할 수 있는 싱크홀 탐지를 위해 포텐셜 필드법 중 중력학적 방법을 적용하고, 그 가능성을 제시하는데 목적을 둔다. 싱크홀을 대신하여 지표면 아래 1.8 m 깊이에 수조($1.8{\times}0.8{\times}0.8m$)를 매설하였다. 매설된 위치를 중심으로 $12{\times}12m$ 구역에서 1 m 간격으로 Scintrex사의 CG-5 상대중력계(정밀도 0.001 mGal)를 이용하여 중력을 측정하였다. 싱크홀 모형에 대한 이론상 중력효과를 계산하기 위해 3차원 중력모델링을 수행하였다. 그 결과, 중력 측정에 의해 직접 산정된 싱크홀 모형에 대한 중력효과 0.036 mGal은 3차원 중력모델링에 의한 결과 0.024 mGal와 근소한 차이를 보였다. 이것은 본 연구를 위해 사용된 수조 크기와 비슷한 규모의 싱크홀은 상대중력측량에 의해 탐지될 수 있으며, 보다 조밀한 간격으로 중력탐사를 수행한다면 보다 작은 규모의 싱크홀 탐지에도 중력탐사가 충분히 적용 가능할 것으로 판단된다.

Keywords

References

  1. Almeida-Filhoa, R., D. F. Rossettia, F. P. Mirandab, F. J. Ferreirac, C. Silvad, and C. Beisl, 2009. Quaternary reactivation of a basement structure in the Barreirinhas Basin, Brazilian Equatorial Margin, Quaternary Research, 72: 103-110. https://doi.org/10.1016/j.yqres.2009.02.010
  2. BAI, 2015. Audit Report: Road and construction project status in seoul, Board of Audit and Inspection of Korea, Seoul, Korea.
  3. Casas-Sainza, A. M. and G. de Vicente, 2009. On the tectonic origin of Iberian topography, Tectonophysics, 474: 214-235. https://doi.org/10.1016/j.tecto.2009.01.030
  4. Closson, D., N. A. Karaki, Y., Klinger, and M. J. Hussein, 2005. Subsidence and sinkhole hazard assessment in the southern Dead Sea area, Jordan, Pure and Applied geophysics, 162: 221-248. https://doi.org/10.1007/s00024-004-2598-y
  5. Cornick, M., J. Koechling, B. Stanley, and B. Zhang, 2016. Localizing ground penetrating radar: a step toward robust autonomous ground vehicle localization, Journal of Field Robotics, 33(1): 82-102. https://doi.org/10.1002/rob.21605
  6. Erkan, K. and C. Jekeli, 2011. A comparative analysis of geophysical fields for multi-sensor applications, Journal of Applied Geophysics, 74: 142-150. https://doi.org/10.1016/j.jappgeo.2011.03.006
  7. Girardi, J. D. and D. M. Davis, 2010. Parabolic dune reactivation and migration at Napeague, NY, USA: insights from aerial and GPR imagery, Geomorphology, 114(4): 530-541. https://doi.org/10.1016/j.geomorph.2009.08.011
  8. Gutierrez, F., J. P. Galve, P. Lucha, and C. Cadtaneda, 2012. Integrating geomorphological mapping, trenching, InSAR and GPR for the identification and characterization of sinkholes: A review and application in the mantled evaporite karst of the Ebro Valley(NE Spain), Geomorphology, 134: 144-156.
  9. Kaufmann, G., 2014. Geophysical mapping for solution and collapse sinkholes, Journal of Applied Geophysics, 111: 271-288. https://doi.org/10.1016/j.jappgeo.2014.10.011
  10. Kim, J., Y. Lee, S. Cha, C. Choi, and S, Lee, 2013. Development of a network RTK positioning and gravity-surveying application with gravity correction using a smartphone, Sensors, 13: 8879-8894. https://doi.org/10.3390/s130708879
  11. Kim, J., Z. Lu, and K. Degrandpre, 2016. Ongoing deformation of sinkholes in Wink, Texas, observed by time-series Sentinel-1A SAR interferometry (preliminary results), Remote Sensing, 8(4): 313. https://doi.org/10.3390/rs8040313
  12. Kwon, B. and H. Kim, 1988. A study on the gravimetric factor (${\delta}$) and phase delay for tidal correction of gravity data, Journal of Korean Earth Science Society, 9(2): 133-142 (in Korean with English abstract).
  13. McGinnis, L. D., M. G. Wolf, J. J. Kohsmann, and C. P. Ervin, 1979. Regional free air gravity anomalies and tectonic observations in the United States, Journal of Geophysical Research: Solid Earth, 84(B2): 591-601. https://doi.org/10.1029/JB084iB02p00591
  14. National Research Council, 2000. Seeing Into the Earth: Noninvasive Characterization of the Shallow Subsurface for Environmental and Engineering Applications, National Academy Press.
  15. Nof, R. N., G. Baer, A. Ziv, E. Raz, S. Atzori, and S. Salvi, 2013. Sinkhole precursors along the Dead Sea, Israel, revealed by SAR interferometry, Geology, 41: 1019-1022. https://doi.org/10.1130/G34505.1
  16. Paine, J. G., S. M. Buckley, E. W. Collins, and C. R. Wilson, 2012. Assessing collapse risk in evaporite sinkhole-prone areas using microgravimetry and radar interferometry, Journal of Environmental and Engineering Geophysics, 17: 75-87. https://doi.org/10.2113/JEEG17.2.75
  17. Rosa, E., M. Larocque, S. Pellerin, S. Gagne, and B. Fournier, 2009. Determining the number of manual measurements required to improve peat thickness estimations by ground penetrating radar, Earth Surface Processes and Landforms, 34(3): 377-383. https://doi.org/10.1002/esp.1741
  18. Samyn, K., F. Mathieu, A. Bitri, A. Nachbaur, and L. Closset, 2014. Integrated geophysical approach in assessing karst presence and sinkhole susceptibility along flood-protection dykes of the Loire River, Orleans, France, Engineering Geology, 183: 170-184. https://doi.org/10.1016/j.enggeo.2014.10.013
  19. Song, S., H. Kim, D. Park, J. Kang, and C. Choi, 2016. Assessment of impact-echo method for cavity detection in dorsal side of sewer pipe, Journal of The Korean Geotechnical Society, 32: 5-14 (in Korean with English abstract).
  20. Talwani, M., 1973. Computer usage in the computation of gravity anomalies, Geophysics, 38: 343-389. https://doi.org/10.1016/B978-0-12-460813-9.50014-X
  21. Tamura, Y., 1987. A harmonic development of the tide-generating potential, Bulletin d'Information des Marees Terrestres, 99: 6813-6855.
  22. Torge, W., 2001. Geodesy Third Edition, Walter de Gruyter Berlin-New York, 416p.
  23. Van Dam, R. L., 2012. Landform characterization using geophysics: Recent advances, applications, and emerging tools, Geomorphology, 137: 57-73. https://doi.org/10.1016/j.geomorph.2010.09.005
  24. Wolf, P. R. and C. D. Ghilani, 1997. Adjustment computations: Statistics and least squares in surveying and GIS, John Wiley & Sons, Inc., Canada, 564p.