• 제목/요약/키워드: energy release

검색결과 1,096건 처리시간 0.039초

층간분리된 복합적층판의 에너지 방출률에 관한 연구 (A Study on the Energy Release Rate of Delaminated Composite Laminates)

  • 정성균
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.97-107
    • /
    • 1995
  • Global postbuckling analysis is accomplished for one-dimensional and two-dimensional delaminations. A new finite element model, which can be used to model the global postbuckling analysis of one-dimensional and two-dimensional delaminations, is presented. In order to calculate the strain energy release rate, geometrically nonlinear analysis is accomplished, and the incremental crack closure technique is introduced. To check the effectiveness of the finite element models and the incremental crack closure technique, the simplified closed-form sloution for a through-the-width delamination with plane strain condition is derived and compared with the finite element result. The finite element results show good agreement with the closed-foul1 solutions. The present method was extended to calculate the strain energy release rate for two-dimensional delamination. For a symmetric circular delamination, the strain energy release rate shows great variation along the delamination front. and the delamination growth appears to occur perpendicular to the loading direction.

  • PDF

대요근에 대한 근에너지기법을 이용한 자세이완기법 적용: 사례연구 (Positional Release Muscle Energy Technique Method for Psoas Major Muscle: Case Study)

  • 최성환;홍현표
    • 대한정형도수물리치료학회지
    • /
    • 제23권1호
    • /
    • pp.59-62
    • /
    • 2017
  • Background: Positional release muscle energy technique (PRMET) is a method joined positional release technique and muscle energy technique. Methods: Subjects those who have low back pain from the acute to chronic phase, were applied PRMET method on psoas major muscle and measured the changes in pain and disfunction. Results: PRMET method is effective for reducing pain and disfunction on psoas major muscle. Conclusions: The advantages of PRMET method are minimized patient inconvenience, shortening of treatment time and effective for improvement. In the future research, methods need to be improved so that this can be applied to other muscles.

  • PDF

Kinetic Energy Release in the Fragmentation of tert-Butylbenzene Molecular Ions. A Mass-analyzed Ion Kinetic Energy Spectrometric (MIKES) Study

  • Choe, Joong-Chul;Kim, Byung-Joo;Kim, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권2호
    • /
    • pp.167-171
    • /
    • 1989
  • Kinetic energy release in the fragmentation of tert-butylbenzene molecular ion was investigated using mass-analyzed ion kinetic energy spectrometry. Method to estimate kinetic energy release distribution (KERD) from experimental peak shape has been explained. Experimental KERD was in good agreement with the calculated result using phase space theory. Effect of dynamical constraint was found to be important.

The Influence of Source Term Release Parameters on Health Effects

  • Jeong, Jongtae;Ha, Jaejoo
    • Nuclear Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.294-302
    • /
    • 1999
  • The influence of source term release parameters on offsite health effects was examined for the YGN 3&4 nuclear power plants. The release parameters considered in this study are release height, heat content, and release time. The effects of core inventory change as a function of fuel burnup was also examined. The health effects by the change of release parameters are early fatalities, cancer fatalities, and early fatality distance. The results showed that early fatalities and early fatality distance decrease as release height increases, although it does not have significant influence on cancer fatalities. The values of both early and late health effects decrease as heat content increases. As release time increases, health consequence shows maximum value in 2 hours of release time and then decreases rapidly. As fuel burnup increases, early fatalities decrease rapidly, while cancer fatalities increase rapidly. Both cases show little variation afterward. Early fatality distance is almost same in all fuel turnup history. The information obtained through this research is very useful in developing strategies for reducing offsite consequences when combined with the influence of weather conditions on offsite risks.

  • PDF

열응력, 내력 및 균열 경계하중을 고려한 2차원 균열문제의 에너지방출율 (The Energy Release Rate of the Two Dimensional Cracked Body Under Thermal Stresses, Body Forces and Crack-Face Tractions)

  • 이태원
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2172-2180
    • /
    • 1993
  • Under general loadings, including body forces, crack-face tractions and thermal loading, the energy release rate equation for a two-dimensional cracked body is presented. Defining the virtual crack extension as the variation of the geometry, the equation is directly derived by a shape design sensitivity of the potential energy. Although the form of the derived energy release rate equation is different from other researchers's results, the three example show that the former is exactly the same as the latter. However, the final integral equation do not involve the derivative of the displacement on the crack surface and crack tip region, thereby improving the numerical accuracy in the computation of the energy relase rate. Moreover, as it was derived from the governing equation including non-linear elasticity without special assumptions, the energy release rate of a elasto-plastic fracture can be obtained and any numerical stress analysis method can be applied.

Fracture analysis of inhomogeneous arch with two longitudinal cracks under non-linear creep

  • Victor I. Rizov;Holm Altenbach
    • Advances in materials Research
    • /
    • 제12권1호
    • /
    • pp.15-29
    • /
    • 2023
  • In this paper, fracture analysis of a continuously inhomogeneous arch structure with two longitudinal cracks is developed in terms of the time-dependent strain energy release rate. The arch under consideration exhibits non-linear creep behavior. The cross-section of the arch is a rectangle. The material is continuously inhomogeneous along the thickness of the cross-section. The arch is loaded by two bending moments applied at its end sections. The mechanical behavior of the material is described by using a non-linear stress-strain-time relationship. The two longitudinal cracks are located symmetrically with respect to the mid-span of the arch. Due to the symmetry, only half of the arch is considered. Time-dependent solutions to strain energy release rate are obtained by analyzing the balance of the energy. For verification, time-dependent solutions to the strain energy release rate are derived also by considering the time-dependent complementary strain energy. The evolution of the strain energy release rate with the time is analyzed. The effects of material inhomogeneity, locations of the two cracks along the thickness of the arch and the magnitude of the external loading on the time-dependent strain energy release rate are evaluated.

직교이방체에서 동적성장하는 균열에 대한 에너지해방률 (Energy Release Rates for a Dynamically Growing Crack in Orthotropic Materials)

  • 주석재
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1590-1596
    • /
    • 1995
  • The energy release rates for a dynamically growing crack in orthotropic materials are expressed explicitly in terms of dynamic stress intensity factors. The stress functions suitable for the problem are found and the evaluation of the J-integral for the theoretical singular crack tip fields yields energy release rates. The present results are simpler than the existing ones and can be reduced to the well known solutions in special cases. Examples of extracting stress intensity factors from the finite element solution using the present results are given for the dynamically growing crack problem of orthotropic materials.

An Experimental Study on the Mass and Energy Release for a Hot Leg Break LBLOCA During Post Blowdown

  • S.J. Hong;Kim, J.H.;Park, G.C.
    • Nuclear Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.108-127
    • /
    • 2000
  • Hot leg break LBLOCA(Large Break LOCA) had a potential to be a containment maximum pressure accident in YGN3&4, which was induced from excessive conservatism in the CE analysis methodology of mass and energy release. This study conducted mass and energy release experiment for the hot leg break LBLOCA during post blowdown with an integral test facility, SNUF(Seoul National University Facility). This facility simulated YGN 3&4 with volume ratio of 1/1140 based on Ishii's three level scaling. Experiment showed that SI(Safety Injection) water refilled cold leg first and core later. SI water was vaporized in the core, which resulted in the repressurization of reactor. This increase of pressure drove the water in cold leg to flow up half height of U tubes. However, since the water was drained back soon, the release through the SG side broken section by evaporation was negligibly small. This study also provided experimental assessment of RELAP5 results by KAERI for the release through the SG side broken section.

  • PDF

확률론적 파괴역학 및 Size Effect Law에 적용을 위한 다중 균열 구조물에서의 에너지 해방률의 고차 미분값 계산 (Computation of the Higher Order Derivatives of Energy Release Rates in a Multiply Cracked Structure for Probabilistic Fracture Mechanics and Size Effect Law)

  • 황찬규
    • 한국전산구조공학회논문집
    • /
    • 제21권4호
    • /
    • pp.391-399
    • /
    • 2008
  • 본 논문에서는 다중 균열 구조물에서의 균열 진전에 따른 에너지 해방을 및 고차 미분값을 구할 수 있는 가상균열 진전법을 제시한다. 이 방법은 다중 균열 체계의 에너지 해방율과 고차 미분값이 단 한번의 해석으로 수행될 수 있는 장점이 있다. 예제에서 얻어진 해의 최대 오차는 에너지 해방율 0.2%, 일차 미분값 $2\sim3%$, 이차 미분값 $5\sim10%$이다 이 방법으로 구한 에너지 해방률의 미분값들은 파괴 확률을 구하거나, sire effect law에 적용될 수 있다.