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Computation of the Higher Order Derivatives of Energy Release Rates in a
Multiply Cracked Structure for Probabilistic Fracture Mechanics
and Size Effect Law
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In this paper, we further generalize the work of Lin and Abel to the case of the first and the second order derivatives of energy
release rates for two-dimensional, multiply cracked systems. The direct integral expressions are presented for the energy release
rates and their first and second order derivatives. The salient feature of this numerical method is that the energy release rates and
their first and second order derivatives can be computed in a single analysis. It is demonstrated through a set of examples that the
proposed method gives expectedly decreasing, but acceptably accurate results for the energy release rates and their first and second
order derivatives. The computed errors were approximately 0.5% for the energy release rates, 3~5% for their first order derivatives
and 10~20% for their second order derivatives for the mesh densities used in the examples. Potential applications of the present

method include a universal size effect model and a probabilistic fracture analysis of cracked structures,

Keywords : virtual crack extension method, second order derivative of energy release rates, universal size

effect model, probabilistic fracture mechanics analysis

1. Introduction

This paper introduces the numerical method able to
calculate the energy release rates and their higher
order derivatives for a multiply cracked structure. The
derivatives of energy release rate can provide useful
information for diverse problems' the prediction of
stability and arrest of a single crack(Alvarado ef al.,

1989). the growth pattern analysis of a system of
interacting cracks(Nemat-Nasser et al., 1978), confi-
gurational stability analysis of evolving cracks(Gao
and Rice, 1989), probabilistic fracture mechanics
analysis(Rahman and Rao, 2002) and universal size
effect model{Bazant, 1995 ; 1997). Several methods
have been proposed for calculating the derivative of

energy release rate. Sumi and his co-workers(Sumi et
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al., 1980) presented a combined analytical and finite-
element solution method in which special singular
crack-tip elements were used. Those singular elements
are generated as a result of the second differentiation
of potential energy and produce the higher order
singularity at the crack-tip. Nguyen and his co-
workers(Nguyen, 1990) introduced an explicit expression
for the matrix of the second order derivatives of
energy with respect to the crack lengths in terms of
path independent integrals. A double virtual crack
extension method have been presented for the
calculation of the second variation of energy for
interacting two-dimensional(2-D) linear cracks (Suo
and Combescure, 1992). Lin and Abel(Lin, 1988)
introduced an analytical virtual crack extension
method that uses variational theory in the finite
element formulation. The method provides the direct
integral forms of energy release rate and its higher
order derivatives for a structure containing a single
2-D crack. The method have been generalized to the
multiply crack system in 2-D and 3-D(Hwang, 1998 :
2001). In this paper, the analytical virtual crack
extension method is further extended for the calculation
of the first and the second order derivatives of energy
release rates in a 2-D multiply cracked structure. In
Section 2, the general formulation for the higher order
derivatives of energy release rates in the multiple
crack systems is presented. In Section 3, two example
problems are solved to demonstrate the accuracy of
the present method. Section 4 discusses the potential
application to the universal size effect model and
probabilistic fracture analysis of linear-elastic cracked

structures.

2. Formulation

In this section, the analytical expressions for
derivatives of energy release rates for a multiply
cracked system modeled using finite element method
are derived. The general formulation, first shown in
(Hwang, 1998), is first repeated here for convenience.
Next, the new formulation for the second order

derivatives of energy release rates in multiply cracked
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systems is presented. For all the developments
reported herein, it is assumed that each crack tip will
be surrounded by a symmetric rosette of standard,

quarter-point singular elements, as shown in Figure 1.

2.1 General formulation for the first and
the second order derivatives of energy
release rates for multiple crack sys-
tems

The potential energy Il of a cracked body with

multiple cracks is given by
H=%uTKu—qu (1)

where #, K and f are the nodal displacement
vector, the structural stiffness matrix and the applied
nodal force vector, respectively. The energy release

rate at crack tip i can be expressed as
al —luTé‘—Ku

G. = e — =
! da;

1

et

2" e ba @

where a, is the length of crack i, and nonzero
contributions to 0K /da; and Of /0a; occur only over

elements adjacent to the crack tip.
It is noted that whenever crack-face, thermal and

»>

\ \— Craclc-tip node
Firstring of quarter-point nodes

Second ring ofnodes

Figure 1 The uniform rosette of standard, quarter-
point elements and mesh perturbation of the first
ring of crack-tip singular elements.



body force loadings are applied, the variations of
loading must be taken into account to reflect the local
load change on the crack-face or in the crack tip
vicinity as a result of virtual crack extension. The

variation of G, Eq. (2), with respect to the growth of

any other crack, j. is,

86 __ oK s 1y B,
§aj 5‘1[ 5‘1] 2 §ai§aj
i 2
+_§l _5_f_+uT _é_f_ (3)
da; dg; da;da;

The second variation of G;. Ea. (2), with respect to

the growth of any other cracks, j and k, is,

6°G,___Ou' 0K Su _ r &K Ou

Sa,da,  da, Sa; 6,  Jaday Sa;
r 6K &%y 16u’ 6K
1 r &K 11 8K bu

——u-=u —-—
2 dabaiba, 2 Saba; day

Ou o, sl 8
ba6ar Sa; Sa; Jaiday

Joul & 1 &F
da;  daida, da;daday

(4)

The variation of the displacement can be obtained

from the variation of the global equilibrium equation

Ku = f with respect to @,

oK N ou Of

53]' 5(1] “50;
i (5)
LK[é_f(S_KJ
&:j 5aj 5aj

The second variation of the displacement is

sr Ok
5% _ gl §aj§ak é'aj(Sak ©)
da;ba; _ 0K ou 5K du

. da; oay - day da;

2

We assume that the elements influenced by each
crack-tip in a multiply cracked body comprise disjoint
sets. Therefore, if i# J, then the second order
variations of stiffness and loading with respect to two
different crack extensions, &; and @;. vanish,

5°K 8 f

é‘a,5aj - §ai5aj

=0 (1)

Hence, when {# j, the first order derivative of

energy release rate with respect to two different crack

extensions @; and d; is given as

3G, __ 0K du ou'of

= = Lihsliigs 8
c)aj oa; Jaj é'aj da;
For i =],
8G _ 10K su 1 &K
561,- 561,- 5a,- 2 5(112

T o 2
Su”of | O S
da; dg; Sa?

1

+ 9

When i # j # k. the second and third order varia-

tions of stiffness and loads are null,
S’k 8K 5K
dada; Sabay  daida;day

8 8 &f o
~(S'avl-b‘aj da;6ay  dadaday

(10)

and the second order derivatives of displacements are

5% _K_IL_ 5K Su  OK éu} (1D

dabay - da; bay  Say da;

Therefore, the second order derivatives of energy

release rates are given by

Sul 8K Su

day  da; da;
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Element stiffness variations 6%,/ da, 521(6 /8a% and
8k, / 8a° are assembled to produce the global stiffness

variations Jk, /da, 5%, /84> and &5k, /8a°. The

element stiffness variations are given by,

Sk, = [§BT DB+ B DSB + Tr(é)BTDB} v 13
v
8%, = ﬂdZBT DB +25B"DSB + BTDé‘zB] v

v

+ ﬂz{é(BTDB + 2Tr(5)(5BT DB+B"DSB )} v (14)

5’B"DB+387B'D
5k = : +36 0B v
J+36B" DS’ B+ B DS’ B

0*°B'DB+28B"DSB |, _

+3 e r(&) dv
Y +B D6B

6|2|(6B" DB + B'DSB)

+ Yor ~ av (15)

y| +2|é|B" DB ++2|&|Tr () B DB

where £ is the virtual strain-like matrix, B is the

strain—nodal displacement matrix, and D the elastic

constitutive matrix. £ is defined as,

IN
P & &p
s a3 2] o
%

where A'S are the geometry changes of the elements
due to virtual crack extension and N is the standard
shape function. The described formulation has been
implemented in the fracture analysis code, FRANC2D,
a 2-D finite-element-based code for simulating crack
propagation(Wawrzynek and Ingraffea, 1987). This
code performs automatic crack propagation simulation
under Linear Elastic Fracture Mechanics(LEFM)

conditions.
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3. Numerical examples

3.1 Example 1. A center cracked infinite
plate subjected to a uniform remote
tensile stress: Verification for the si-
ngle crack case

The first numerical example investigates a central
crack in a large plate subjected to uniform remote
tensile stress, 0y. As shown in Figure 2, the initial
crack length to width ratio a/Wis 0.01 to approximate
a central crack in the infinite plate under a plane
stress condition. For a direct comparison with
analytical solutions for a single crack, only one-half of
the plate was modeled, using the symmetry in the
problem, with about 500 linear strain triangular
elements including quarter-point elements at the
cracktip(Figure 3).

c=1.0
!

[N D O R A

2a

[
. IW=20 |
{ 1
Figure 2 A central crack in a simulated infinite plate
under remote unit tensile stress. Not to scale: initial
a/W = 0.01, 2H=2W=20m, %=1Pa. Example 1

v
H
t

W=190

Figure 3 Finite element mesh for a central crack,
Example 1.



It should be noted that 6/ /da and 627/ 8a® terms
are null for a virtual crack extension under this
loading. This model is analyzed to demonstrate the
capability of the proposed method for evaluating the
second derivative of mode-I energy release rate and

stress intensity factor. The exact solutions of X,

SK;/da and §%K,/8a*for a mode-l crack under

uniform remote tensile stress, Gy, in an infinite plate
can be expressed analytically as(Paris and Sih, 1965),

(’0\/; %znf&\ﬁ’: (17)
a’ §da? 4aV a

Tables 1, 2 and 3 show that the best computed
solutions differ from the exact by about 0.1% for X,

K] -'C'OF

2-3% for 8K, /8a, and 5-10% for 5%K,; / 8a*. respec-

tively, for the particular value of crack-tip element

size used(see Figure 3).

Table 1 Comparison of computed with exact solutions
for K;, Example 1, Oy=1Pa, 2W=2H=20m, Crack-tip
element size=a /8.

a/W K; exact K; computed(Error %)
0.10 0.5605 0.5610(0.09)
0.11 0.5879 0.5884(0.08)
0.12 0.6140 0.6145(0.08)
0.13 0.6391 0.6395(0.06)
0.14 0.6632 (0.6627(0.08)

Table 2 Comparison of computed with exact solutions
for 8K; / da, Example 1.

a/W OK; exact 0K, computed(Error %)
0.10 2.802 2.739(2.25)
0.11 2.672 2.617(2.06)
0.12 2.568 2.561(1.17)
0.13 2.458 2.404(2.20)
0.14 2.369 2.313(2.36)

Table 3 Comparison of computed with exact solutions
for 521&} / 8a* Example 1.

a/Ww Exact Present solution{Error %)j
0.10 -14.012 ~15.044(7.37)
0.11 -12.145 -11.637(4.18)
0.12 -10.659 -11.915(11.8)
0.13 -9.454 -9.881(4.52)
0.14 -8.459 -8.911(5.34)

it

3.2 Example 2. Radial multiple cracks
embedded in the infinite plate

The second example problem is a set of radial
cracks embedded in an infinite plate subjected to the
normal stress ¢, =1Pa, as showﬁ in Figure 4. Two
cracks are located along two different local radial axes
at distance d=1 from the origin and the length of each
crack is taken to be 2a=2m. The orientation of crack
1 is kept constant at 30 deg while the orientation of
the second crack is changed from 45 to 60 degrees.

Figure 5 shows a finite element discretization for the

case of 4, =30° and @, =60°. The numerical studies
are presented for the normalized energy release rates,

and thelr derivatives, where 7 is a shear modulus,

G, =k07z(1+1()/8/1, ky =0'22\/;, and & is defined as

kK =3~4y for plane strain,

Y for plane stress. (18)
+v

K =

%

Figure 4 Radial multiple cracks embedded in the
infinite plate, d=1m, Example 2

Crack 1

-

o LA

Figure b Finite element discretization for radial
multiple cracks embedded in the infinite plate
(2H=2W=40m), Example 2.
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Shear modulus and Poisson’s ratio are chosen to be

0.5 and =zero, respectively, for this calculation.

Therefore, k;=1 and G,=x. In this example,

. Present Solution Analytic solution
cracktip element size is a/6 and three rings of Crack tip| 6,=45° | 6,=60° | 6,=45° | 6,=60°
elements are used around the crack-tip for the mesh i 0.246 0.539 0.255 0.536
perturbation. Table 4 compares the normalized energy 2 0.805 0.802 0.796 0.795
release rates calculated by the present method with 3 0.541 0.292 0.540 0.289

4 0.083 0.076 0.085 0.076

2 Size Effect Lawoll 448 918 0% FE FREA Y oA sgge] 23 v At

Table 4 Comparison between numerical and analytical
solutions for the normalized energy release rate,

G;/G,, 6, =30° Example 2.

Table 5 The calculated values of the first order derivatives of normalized energy release rates, 5G,-/(5ajGo), by the

present virtual crack extension method and the finite difference approximation, g =30° and 6, = 60°, Example 2.

Present solution Finite difference solution
1 2 3 4 Row sum 1 2 3 4 Row sum
1 0.418 0.350 -0.289 -0.122 0.357 1 0.420 0.347 -0.290 -0.124 0.353
2 0.350 0.442 0.083 -0.043 0.832 2 0.350 0.462 0.086 -0.041 0.857
3 -0.289 0.083 0.454 0.070 0.318 3 -0.277 0.089 0.455 0.073 0.340
4 -0.122 -0.043 0.070 0.052 -0.043 4 -0.115 -0.041 0.070 0.051 -0.035

Table 6 The calculated values of the second order derivatives of normalized energy release rates, §Gi2/(§aj5akG0),
by the present numerical method and the finite difference approximation, 6 =30°and &, =60°, Example 2.

Present solution Finite difference solution
k=1 é'Gi2 /(5aj5a1G0 )VCE =1 5Gi2 /(§aj5a1G0 )FDM
1 2 3 4 1 2 3 4
1 1.736 0.059 -1.480 0.087 1 1.299 0.047 -1.484 0.093
2 0.059 -0.064 -0.111 0.042 2 0.047 -0.038 -0.111 0.043
3 -1.480 -0.111 0.930 -0.072 3 -1.484 -0.111 0.863 -0.073
4 0.087 0.042 -0.072 -0.040 4 0.093 0.043 -0.073 -0.035
k=2 : 6G; /(8a,0a,G, )VCE k=2 : 6G; /(8a,8a,G, )FDM
1 2 3 4 1 2 3 4
1 0.059 -0.064 -0.111 0.042 1 0.064 -0.050 -0.112 0.041
2 -0.064 -0.483 0.037 0.258 2 -0.050 0.020 0.039 0.255
3 -0.111 0.037 0.149 -0.025 3 -0.112 0.039 0.119 -0.023
4 0.042 0.258 -0.025 -0.249 4 0.041 0.255 -0.023 -0.245
k=3 : 6G 1(8a,8a,Gy )VCE k=3 : 6G 1{Sa;8a,Gy )FDM
1 2 3 4 1 2 3 4
1 -1.480 -0.111 0.930 -0.072 1 -1.556 -0.112 0.959 -0.071
2 -0.111 0.037 0.149 -0.025 2 -0.112 0.038 0.148 -0.025
3 0.930 0.149 -0.553 0.017 3 0.959 0.148 -0.576 0.016
4 -0.072 -0.025 0.017 0.008 4 -0.071 -0.025 0.016 0.010
J=4 : 6G /(8a;8a,G, )VCE k=4:0G/(8a;6a,G,),
1 2 3 4 1 2 3 4
1 0.087 0.042 -0.072 -0.040 1 0.092 0.042 -0.081 -0.039
2 0.042 0.258 -0.025 -0.249 2 0.042 0.260 -0.024 -0.252
3 -0.072 -0.025 0.017 0.008 3 -0.081 -0.024 -0.017 0.009
4 -0.040 -0.249 0.008 0.193 4 -0.039 -0.252 0.009 0.218
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analytical solutions{(Shbeeb et al., 1999a : 1999b).
The analytical solutions are for multiple cracks in an
infinite non-homogeneous plate, but they contain
solutions for homogeneous material, which can be
used as reference solutions. Table 4 indicates that a
good agreement between numerical and analytical
solutions was obtained for normalized energy release
rate, with about 2-3% differences for the mesh
density used in this analysis. For the first order
derivatives of energy release rates, finite difference

solutions are adopted as reference values for the case
of 6 =30° and 6, =60°. Table 5 compares the first
order derivatives of normalized energy release rates
by the method

present

and finite difference

approximation. The crack extension increment Say
used in the finite difference solution was 1% of the
half crack length, a. A difference of 5% was observed
between the present and finite difference solutions in
major diagonal terms.

We obtain finite difference solutions for the second

order derivatives of energy release rates by

A ' = ——iv(a-ké'ak)”:' -5—(;((1) \ (19)

where 4-by-4 derivative matrices 0G,/da ; are cal-
culated by the present numerical method for five
different crack geometries (al,azaag,cu), (a1 +0ay,ay,
a3,a4), (al,az +5a2,a3,a4),(al,a2,a3 +5a3,a4) and (al,az,
ay,ay +6ay). It is shown from Table 6 that the present
numerical solutions for the second order derivative of

normalized energy release rate are in good agreement

with finite difference solutions.
4. Applications

In this section, potential application problems of

the present method are discussed.
4.1 Universal Size Effect Model

In the universal size effect model(Bazant 1995 .

ot
g
=

1997), the nominal strength of the structure, Oy is
given by

DO = s Db = Ef <g"> (20)

As shown, the nominal strength oy 1s given as a
function of structure size D, fracture energy Gf, effe-

ctive length of fracture process zone ¢ ¢, dimensipnless
energy release rate g and its higher order derivatives,
g'and g”. The model represents a smooth transition
from the case of plasticity, for which there is no size
effect, to the case of LEFM, for which the size effect
is the strongest possible. The present method can
provide the accurate values of energy release rate and
its higher order derivatives for universal size effect

meodel.

4.2 First and Second Order Reliability
Methods(FORM/SORM) for probabilistic
fracture mechanics analysis

In the stochastic approach, the performance of the
cracked structure is evaluated using the probability of

failure, Pr, defined as

)pdifﬂﬂﬂ(x)w]df ({ felx)de 2D
glx)<0

where fx (X) is the joint probability density fun-
ction of X. In a cracked structure, X denotes an
N-dimensional random vector with crack geometry
(a), crack orientation, mode-I fracture energy(Gr) at
crack initiation, and loads. If the propagation of a
mode-] crack constitutes a failure condition, the

performance function is

H(x)=G -G (22)

where H(x)=0 means crack propagation. To com~
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pute the failure probability in Eq. (21), Rahman and
Rao (5] used the FORM which leads to nonlinear
constrained optimization, requiring the derivative of

the performance function with respect to crack size

(a) as
oH 0G
Fai. (23)

if fracture energy Grc is a constant. If the SORM is
used, the probabilistic analysis requires the second
order derivatives of energy release rate. Then, the
second order derivative of the performance function
will be given as

F°H _ %G

g (24)
0a’ 0a’

5. Conclusions

In this paper, the work of Lin and Abel(Lin and
Abel, 1988) is further extended to the general case of
multiple crack systems. Analytical expressions are
presented for energy release rates, and their first and
second order derivatives for a multiply cracked body.
The salient feature of this approach is that all of these
values can be computed in a single finite element
analysis. The present method has been implemented
and verified in FRANC2D, fracture analysis software
developed by the Cornell Fracture Group. It is
demonstrated through numerical examples that the
proposed method gives expectedly decreasing, but
acceptably accurate results for the energy release
rates, their first and second order derivatives. The
computed errors are about 0.5% for the energy release
rates, 2-3% for their first order derivatives and
5-10% for the second order derivatives for the mesh
density used in these examples. Potential application
problems of the present method include probabilistic
fracture mechanics analysis of linear-elastic cracked
structures and the universal size effect model both of
which require calculation of derivatives of energy

release rates.
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