• Title/Summary/Keyword: energy module

Search Result 1,520, Processing Time 0.04 seconds

The development of th gamma-ray imaging and operation algorithm for the gamma-ray detection system (감마선 탐지장치의 감마선 영상화 및 운용 알고리즘 개발)

  • Song, Kun-young;Hwang, Young-gwan;Lee, Nam-ho;Yuk, Young-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.942-943
    • /
    • 2016
  • Stereo gamma ray detection system generates a two-dimensional image of the gamma ray by using the position values and the gamma ray signal. And the device will overlap with the visible light image shows the actual distribution of the gamma-ray space. The gamma ray detection device is a stereo configuration to a motion controller for controlling the signal measurement unit and the position detection portion for detecting the detection portion and the gamma-ray signal comprising a gamma-ray detection sensor. In this paper, we developed a system operation management algorithm for each module individually configured efficiently. We confirmed the imaged and distribution information output for the gamma rays from gamma-ray irradiation test site by using these results.

  • PDF

Design and Construction of Urban-type Energy Self-Supporting Smart-Farm Service Model (도심형 에너지 자립 스마트팜 서비스 모델 설계 및 구축)

  • Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1305-1310
    • /
    • 2019
  • Modern agriculture is changing from resource-oriented agriculture to technology-oriented agriculture. Agriculture, which combines science and technology, is recognized as a new growth engine, and governments, local governments, research institutes, and industry are working together to develop and disseminate various devices necessary for smart farms to build intelligent smart farms. Recently, research is being conducted to build a more intelligent agricultural environment by building a cloud platform. In this paper, we propose a plan to build an urban energy - independent smart farm that can utilize leisure time and agricultural activities by utilizing the rooftop of a city. Also, by using IT technology, various data of smart farm can be managed on remote server, and HMI module for controlling internal environment of smart farm can be developed to manage smart farm automatically or semi-automatically. The service model suggests a model that can manage the internal environment of the smart farm based on mobile.

An Optimal Design of a Driving Mechanism for Air Circuit Breaker using Taguchi Design of Experiments (다구찌실험계획법을 활용한 기중차단기의 메커니즘 최적화)

  • Park, Woo-Jin;Park, Yong-ik;Ahn, Kil-Young;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.78-84
    • /
    • 2022
  • An air circuit breaker (ACB) is an electrical protection device that interrupts abnormal fault currents that result from overloads or short circuits in a low-voltage power distribution line. The ACB consists of a main circuit part for current flow, mechanism part for the opening and closing operation of movable conductors, and arc-extinguishing part for arc extinction during the breaking operation. The driving mechanism of the ACB is a spring energy charging type. The faster the contact opening speed of the movable conductors during the opening process, the better the breaking performance. However, there is a disadvantage that the durability of mechanism decreases in inverse proportion to the use of a spring capable of accumulating high energy to configure the breaking speed faster. Therefore, to simultaneously satisfy the breaking performance and mechanical endurance of the ACB, its driving mechanism must be optimized. In this study, a dynamic model of the ACB was developed using the MDO(Mechanism Dynamics Option) module of CREO, which is widely used in multibody dynamics analysis. To improve the opening velocity, the Taguchi design method was applied to optimize the design parameters of an ACB with many linkages. In addition, to evaluate the improvement in the operating characteristics, the simulation and experimental results were compared with the MDO model and improved prototype sample, respectively.

A Fundamental Study on Structure Health Monitoring System Based on Energy Harvesting of Harbour Structure (자가발전기반 항만 구조물 건전성 모니터링 시스템에 대한 기초연구)

  • Jong-Hwa Yi;Seung-Hyeon Lee;Young-seok Kim;Chul Park
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.847-860
    • /
    • 2022
  • Purpose: The purpose of this paper is to present a basic study on the development of a self-generation infrastructure for monitoring the health of harbour structures. Method: By developing a self-generation system and fiber optic sensors for seawater, the study provides basic research data on port structure health monitoring. Result: Through sunlight simulation analysis, 4-5 hours of sunlight can be secure in the domestic environment. Through this, the optical splitter (Introgate) that collects the raw data from the FBG sensor applicable to seawater, the MCU that calculates it, the IoT module with wireless communication functionality, the monitoring server and the supply system are set up. Conclusion: Monitoring port structures directly with fiber optic probes (FBG) and the possibility of using selfpowered systems were confirmed.

A Study on Active Ion Transport Technology to Improve Water Electrolysis System Performance (수전해 시스템 성능 향상을 위한 능동 이온수송 기술 연구)

  • HYEON-JUNG KIM;HAO GUO;SANG-YOUNG KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.132-140
    • /
    • 2023
  • In this study, rotary magnet holder (RMH) was manufactured to analyze the ion transport effect according to the rotating magnetic field for the hydrogen production efficiency by alkaline water electrolyte. In the experiment, the voltage signal according to the magnet arrangement inside the RMH, the rotation speed, and the rotation time was measured using the voltage measurement module. As a result of the voltage signal measurement experiment, the average potential difference increased as the rotation speed of the RMH increased. Through the results of the voltage signal measurement experiment, the most efficient magnet arrangement (case 2) was applied to the RMH to conduct a water electrolysis experiment. A 20% NaOH aqueous solution was filled in the electrolytic cell, and a direct current 2 V constant voltage was applied to measure the current value according to the RMH rotation to compare the hydrogen generation amount. When rotating at 100 RPM, the hydrogen production efficiency increased by 8.06% compared to when not rotating. Considering the area exceeding +25 mA, which was not measured at the beginning of the experiment, an increase in hydrogen production of about 10% or more can be expected.

New Communication Method using Pulse Width Information for Power Converter Parallel Operation (전력변환기 병렬운전을 위한 펄스폭 정보를 이용한 새로운 통신방식)

  • Dong-Whan Kim;Seong-Cheol Choi;Tuan-Vu Le;Sung-Jun Park;Seong-Mi Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1097-1108
    • /
    • 2023
  • Recently, demand for technology for energy economy and stable supply is increasing due to the increase in power demand of loads. The amount of DC power generation using new and renewable energy is noticeably increasing, and the use of DC power supplies is also increasing due to the increase in electric vehicles and digital loads. During parallel operation to increase the capacity of the power converter, the module bus method or the method using Can communication and serial communication has significant difficulties in smooth operation due to communication time delay for information sharing. Synchronization of information sharing of each power converter is essential for smooth parallel operation, and minimization of communication time delay is urgently needed as a way to overcome this problem. In this paper, a new communication method using pulse width information is proposed as a communication method specialized for parallel operation of power converters to compensate for the disadvantage of communication transmission delay in the existing system. The proposed communication method has the advantage of being easily implemented using the PWM and Capture function of the microcomputer. In addition, the DC/DC converter for DC distribution was verified through simulation and experiment, and it has the advantage of easy capacity expansion when applied to parallel operation of various types of power converters as well as DC/DC converters.

Experimental and numerical study on mechanical behavior of RC shear walls with precast steel-concrete composite module in nuclear power plant

  • Haitao Xu;Jinbin Xu;Zhanfa Dong;Zhixin Ding;Mingxin Bai;Xiaodong Du;Dayang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2352-2366
    • /
    • 2024
  • Reinforced concrete (RC) shear walls with precast steel-concrete composite modular (PSCCM) are strongly recommended in the structural design of nuclear power plants due to the need for a large number of process pipeline crossings and industrial construction. However, the effect of the PSCCM on the mechanical behavior of the whole RC shear wall is still unknown and has received little attention. In this study, three 1:3 scaled specimens, one traditional shear wall specimen (TW) and two shear wall specimens with the PSCCM (PW1, PW2), were designed and investigated under cyclic loadings. The failure mode, hysteretic curve, energy dissipation, stiffness and strength degradations were then comparatively investigated to reveal the effect of the PSCCM. Furthermore, numerical models of the RC shear wall with different PSCCM distributions were analyzed. The results show that the shear wall with the PSCCM has comparable mechanical properties with the traditional shear wall, which can be further improved by adding reinforced concrete constraints on both sides of the shear wall. The accumulated energy dissipation of the PW2 is higher than that of the TW and PW1 by 98.7 % and 60.0 %. The failure of the shear wall with the PSCCM is mainly concentrated in the reinforced concrete wall below the PSCCM, while the PSCCM maintains an elastic working state as a whole. Shear walls with the PSCCM arranged in the high stress zone will have a higher load-bearing capacity and lateral stiffness, but will suffer a higher risk of failure. The PSCCM in the low stress zone is always in an elastic working state.

Various Pulse Forming of Pulsed $CO_2$ laser using Multi-pulse Superposition Technique

  • Chung, Hyun-Ju;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.127-132
    • /
    • 2001
  • We describe the pulse forming of pulsed $CO_2$laser using multi-pulse superposition technique. A various pulse length, high duty cycle pulse forming network(PFN) is constructed by time sequence. That is, this study shows a technology that makes it possible to make various pulse shapes by turning on SCRs of three PFN modules consecutively at a desirable delay time with the aid of PIC one-chip microprocessor. The power supply for this experiment consists of three PFN modules. Each PFN module uses a capacitor, a pulse forming inductor, a SCR, a High voltage pulse transformer, and a bridge rectifier on each transformer secondary. The PFN modules operate at low voltage and drive the primary of HV pulse transformer. The secondary of the transformer has a full-wave rectifier, which passes the pulse energy to the load in a continuous sequence. We investigated laser pulse shape and duration as various trigger time intervals of SCRs among three PFN modules. As a result, we can obtain laser beam with various pulse shapes and durations from about 250 $mutextrm{s}$ to 600 $mutextrm{s}$.

  • PDF

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.46-55
    • /
    • 2004
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge resonant snubber in the load-side which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of ZVS-PWM boost chopper-fed DC-DC converter proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory, the temperature performance of IGBT module, the actual power conversion efficiency and the EMI of radiated and conducted emissions. And then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn off mode transition with the aid of an additional lossless clamping diode loop, and reduced the EMI conducted emission in this paper.

Effects of Ag on the Characteristics of Sn-Pb-Ag Solder for Photovoltaic Ribbon (태양광 리본용 Sn-Pb-Ag 솔더의 특성에 미치는 Ag의 영향)

  • Son, Yeon-Su;Cho, Tae-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.332-337
    • /
    • 2015
  • We have studied the effects of Ag on the characteristics of $Sn_{60}Pb_{40}Ag_x$ (wt%) solder for photovoltaic ribbon. Ag atoms in the solder formed an alloy phase of $Ag_3Sn$ after reacting with some part of Sn atoms, while they did not react with Pb atoms, but decreased the mean size of Pb solid phase. The enhancement of peel strength between solar cell and ribbon is an important part in the developments of long-lifespan solar module. The peel strength of the solder ribbon of $Sn_{60}Pb_{40}$ (wt%) was $169N/mm^2$, and it was largely enhanced by adding a small amount of Ag atoms. The maximum peel strength was $295N/mm^2$ in the solder ribbon of $Sn_{60}Pb_{40}Ag_2$ (wt%). This result is caused by the high binding energy of 162.9 kJ/mol between Ag atoms in the solder and Ag atoms in Ag sheet.