Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.5.332

Effects of Ag on the Characteristics of Sn-Pb-Ag Solder for Photovoltaic Ribbon  

Son, Yeon-Su (Department of Nano Materials Engineering, Kyungpook National University)
Cho, Tae-Sik (Department of Nano Materials Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.5, 2015 , pp. 332-337 More about this Journal
Abstract
We have studied the effects of Ag on the characteristics of $Sn_{60}Pb_{40}Ag_x$ (wt%) solder for photovoltaic ribbon. Ag atoms in the solder formed an alloy phase of $Ag_3Sn$ after reacting with some part of Sn atoms, while they did not react with Pb atoms, but decreased the mean size of Pb solid phase. The enhancement of peel strength between solar cell and ribbon is an important part in the developments of long-lifespan solar module. The peel strength of the solder ribbon of $Sn_{60}Pb_{40}$ (wt%) was $169N/mm^2$, and it was largely enhanced by adding a small amount of Ag atoms. The maximum peel strength was $295N/mm^2$ in the solder ribbon of $Sn_{60}Pb_{40}Ag_2$ (wt%). This result is caused by the high binding energy of 162.9 kJ/mol between Ag atoms in the solder and Ag atoms in Ag sheet.
Keywords
Photovoltaic ribbon; Sn-Pb-Ag solder; Ag addition; Enhancement of peel strength;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Grassl, J. Kokott, M. Kulessa, J. Luther, F. Nuscheler, R. Sauerborn, H. J. Schellnhuber, R. Schubert, and E. D. Schulze, WBGU (German Advisory Council on Global Change) Berlin Special Report (2003).
2 A. Rose, Physica Status Solidi. A, 56, 11 (1979).   DOI
3 J. M. Pearce, Futures, 34, 663 (2002).   DOI
4 R. Lathrop and K. Pfluke, Published in the proceedings of the 26th European Union Photovoltaic Solar Energy Conference, 5 (2011).
5 T. S. Cho, C. S. Cho, and M. S. Chae, Trans. Electr. Electron. Mater., 15, 217 (2014).   DOI
6 T. S. Cho and C. S. Cho, Trans. Electr. Electron. Mater., 16, 20 (2015).   DOI
7 J. S. Jeong, N. Park, and C. Han, Microelectronics Reliability, 52, 2326 (2012).   DOI   ScienceOn
8 M. A. Quintana, D. L. King, T. J. McMahon, and C. R. Osterwald, Photovoltaic Specialists Conference, 1436 (2002).
9 J. Wendt, M. Trager, R. Klengel, M. Petzold, D. Schade, and R. Sykes, Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) 2010 12th IEEE Intersociety Conference, 1 (2010).
10 M. Schaefer, R. A. Fournelle, and J. Liang, Journal of Electronic Materials, 27, 1167 (1998).   DOI
11 S. Choi, T. R. Bieler, K. N. Subramanian, and J. P. Lucas, Soldering & Surface Mount Technology, 13, 26 (2001).   DOI
12 W. B. Hampshire, Soldering & Surface Mount Technology, 5, 49 (1993).   DOI
13 C. Y. Liu, C. Chan, and K. N. Tu, J. of Applied Physics, 88, 5703 (2000).   DOI
14 J. H. Lee, Y. H. Lee, and Y. S. Kim, Scripta Materialia, 42, 789 (2000).   DOI
15 P. Schmitt, P. Kaiser, C. Savio, M. Tranitz, and U. Eitner, Energy Procedia, 27, 664 (2012).
16 Q. Ran, H. L. Lukas, and V. lvanchenko, Landolt-Bornstein - Group IV Physical Chemistry, 11C3, 113 (2007).   DOI
17 K. Y. Lee, M. Li, D. R. Olsen, and W. T. Chen, 2001 Electronic Components and Technology Conference, 478 (2001).
18 Y. R. Luo and J. A. Kerr, CRC Handbook of Chemistry and Physics, 89 (2012).
19 Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton 2007) p. 475.
20 W. D. Callister and D. G. Rethwisch, Materials Science and Engineering: an Introduction, 7th ed (John Wiley & Sons, New York, 2007) p. 278.