Journal of the Korean Society for Precision Engineering
/
v.31
no.10
/
pp.935-945
/
2014
This paper presents a new road generative system that employs a pad of preventive overspeed or tollgate. The system consists of pad, shaft, torsional damper, oneway-clutch, gear system, and electricity generator components. When the car driven through the road generation system, it occurred to surplus energy in the DC power. In order to maximize the power of electricity energy harvester, the simulation software is developed. It is used to determine parametric dimension for optimal design with the theoretically calculated results from the simulation software. The transient responses at the conditions of low and high vehicle speed are compared with the calculated results as torque, impact force, power, out energy etc. Consequently, before design a road generation system, the analysis of simulation results shows that the proposed concept and system has efficiency and confidence.
A novel energy harvesting technique that uses conducted electromagnetic interference as an energy source is presented. Conducted EMI generated from fluorescent light using a switched-mode power supply was measured and modeled as an equivalent voltage source. Two types of rectifier circuits-a bridge rectifier and a voltage doubler-were used as the harvesting devices for conducted EMI source. The matching networks were designed based on the equivalent model, and the harvested power was improved. The implemented energy harvester produces a regulated power over 68.9 mW and current over 15.1 mA while a regulated voltage can be selected between 3.3 V and 5 V. The proposed system shows the highest harvesting power indoor environment and can provide enough power for the Internet of Things devices.
Kim, Kyoung-Bum;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Cho, Jeong-Ho;Paik, Jong-Hoo;Nahm, Sahn;Seong, Tae-Hyeon
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.25
no.10
/
pp.766-772
/
2012
Spring supported piezoelectric cantilever structures (SPCS) were fabricated for vibration-based energy harvester application. We selected four elastic springs (A, B, C, and D type) as cantilever's supporter, each elastic spring has a different spring constant (S). The C type of SPCS ($S_C$: 4,649 N/m) showed a extremely low resonance frequency of 81 Hz along with the highest power output of 38.5 mW while the A type of SPCS ($S_A$: 40,629 N/m) didn't show a resonance frequency while. Therefore, it is considered that the lower spring constant lead to a lower resonance frequency of the SPCS. In addition, a tip mass (18 g) at one end of the SPCS could further reduce the resonance frequency without heavy degradation of power output.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.25
no.6
/
pp.406-413
/
2015
The piezoelectric coupling in piezoelectric vibration energy harvesters with load resistance induces electrical damping as well as increase in the system stiffness. Starting from analytically deriving the explicit relations through governing equations in the frequency domain, this work identifies the characteristics of the electrically induced damping mechanism and shows that the electrically induced damping serves as a structural hysteretic damping on condition that a piezoelectric vibration energy harvester is excited at its short-circuit resonant frequency and its load resistor is optimally impedance- matched at the same time. Finally, it is analytically verified that the equivalence of a mechanical and an electrically induced damping ratio is required for the maximum power generation at a load resistor, which was claimed in some literature.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2014.10a
/
pp.539-543
/
2014
This work investigated the electromechanical performance of a cantilevered vibration energy harvester incorporating the single crystal PMN-PZT, manufactured with the most recent technology of solid-state single crystal growth. Single crystal PMN-PZTs with two different crystallographic axes such as [011] and [001] were considered. For the [011] orientation, because material properties such as the stiffness, piezoelectric strain coefficients are not the same in the directions normal to the crystallographic axis, the effects of the transversely anisotropy on the magnitude and frequency bandwidth of output power were also analyzed.
This paper presents a method of design for the energy harvesting of a piezoelectric cantilever beam. Vibration modes have strain nodes where the strain distribution changes in the direction of the beam length. Covering the strain nodes of the vibration modes with continuous electrodes effects a cancellation of the voltages outputs. The use of segmented electrodes avoids cancellations of the voltage for multi-mode vibration. The resistive load affects the voltage and generated power. The optimum resistive load is considered for segmented and continuous electrodes, and then the power output is verified. One of the effective parameters on energy harvesting performance is the existence of concentrated mass. This topic is studied in this paper. Resonance and off-resonance cases are considered for the harvester. In this paper, both theoretical and experimental methods are used for satisfactory results.
Rasheed, Aamir;Park, Hyunje;Sohn, Min Kyun;Lee, Tae Hyeong;Kang, Dae Joon
Ceramist
/
v.23
no.1
/
pp.54-88
/
2020
Global effort has resulted in tremendous progress with energy harvesters that extract mechanical energy from ambient sources, convert it to electrical energy, and use it for systems such as wrist watches, mobile electronic devices, wireless sensor nodes, health monitoring, and biosensors. However, harvesting a single energy source only still pauses a great challenge in driving sustainable and maintenance-free monitoring and sensing devices. Over the last few years, research on high-performance mechanical energy harvesters at the micro and nanoscale has been directed toward the development of hybrid devices that either aim to harvest mechanical energy in addition to other types of energies simultaneously or to exploit multiple mechanisms to more effectively harvest mechanical energy. Herein, we appraise the rational designs for multiple energy harvesting, specifically state-of-the-art hybrid mechanical energy harvesters that employ multiple piezoelectric and triboelectric mechanisms to efficiently harvest mechanical energy. We identify the critical material parameters and device design criteria that lead to high-performance hybrid mechanical energy harvesters. Finally, we address the future perspectives and remaining challenges in the field.
Wearable electronic devices with batteries must be lightweight, flexible and highly durable. Most importantly, the battery should be able to self-generate to operate the devices without having to be too frequently charged externally. An eco-friendly energy harvesting technology from various sources, such as solar energy, electromagnetic energy and wind energy, has been developed for a self-charging flexible battery. Although the energy harvesting from such sources are often unstable according to the surrounding environment, the energy harvesting from body movements and vibrations has been less affected by the surrounding environment. In this regard, flexible piezoelectric modules are the most attractive solution for this issue, because they convert mechanical energy to electrical energy and harvest energy from the human body motions. Among the various flexible piezoelectric modules, piezoelectric nanofibers have advantages when used as an energy harvester in wearable devices, due to their simple manufacturing process with good applicability to polymers and ceramics. This review focused on diverse flexible piezoelectric nanofibers and discusses their applications as various energy harvesting systems.
본 논문은 압전소자 발전기를 이용하여 하베스팅 에너지 발전량을 증대시키기 위한 에너지 하베스팅 방법을 제안하였다. 기존의 풀브리지 정류기만을 이용한 standard DC 방법에 압전소자와 병렬로 공진을 위한 인덕터와 MOSFET를 연결하여 parallel SSHI 회로를 구성하였으며, 또한 변위센서와 비교기를 통해 스위치 시점을 결정한다. 시뮬레이션 분석을 위해 압전발전기를 등가회로로 모델링하였으며, standard DC방법과 parallel SSHI 방법의 성능을 비교하여 parallel SSHI 방법이 standard DC 방법보다 약 13%의 전력이 증대된 것을 확인 하였다.
본 연구에서는 촉각 센서와 에너지 수확소자가 한 소자에 융합되어있는 구조를 제안한다. 이 소자는 압전 스트랩과 유연한 튜브, 폴리머 필름으로 구성되어있으며, 유연하며 잘 늘어나는 직물구조를 갖는다. 완성된 소자에 수평방향의 인장 및 수축 힘이 가해지면 전압이 발생하여 에너지 수확소자로 동작하며, 수직방향의 힘이 가해지면 정전용량이 변화하여 촉각센서로 동작한다. 제작한 소자가 에너지 수확소자로 동작할 때 최대 36.6 V의 출력 전압이 측정되었으며, 소자를 누르는 수직힘이 증가할수록 정전용량이 커지는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.