• Title/Summary/Keyword: energy change

Search Result 6,341, Processing Time 0.032 seconds

Effect on the Heat of Reaction to Temperature and Absorption Capacity in the Reaction of Cyclic Amines with Carbon Dioxide (고리형 아민과 이산화탄소의 반응에서 온도와 흡수능이 반응열에 미치는 영향)

  • CHOI, JEONG HO;JANG, JONG TACK;YUN, SOUNG HEE;JO, WON HEE;JUNG, JIN YOUNG;YOON, YEO IL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.530-537
    • /
    • 2018
  • The effect of temperature and absorption capacity on heat of reaction, which is one of the characteristic studies of $CO_2$ absorption, were investigated in a differential reaction calorimeter (DRC) by using piperazine (PZ) and 2-methylpiperazine (2-MPZ). For all absorbents, $CO_2$ loading capacity decreased with increasing the temperature, while the heat of reaction increased, it figured out that these had a linear correlation between $CO_2$ loading capacity and/or heat of reaction and the temperature. The heat of reaction of all absorbents increased with increasing $CO_2$ loading capacity, especially 2-MPZ rapidly increased at $70^{\circ}C$. The reason for increase in the heat of reaction was occurred the regeneration of $CO_2$, which is a reverse-reaction, simultaneously with the absorption.

Dynamic Energy Balance and Obesity Prevention

  • Yoo, Sunmi
    • Journal of Obesity & Metabolic Syndrome
    • /
    • v.27 no.4
    • /
    • pp.203-212
    • /
    • 2018
  • Dynamic energy balance can give clinicians important answers for why obesity is so resistant to control. When food intake is reduced for weight control, all components of energy expenditure change, including metabolic rate at rest (resting energy expenditure [REE]), metabolic rate of exercise, and adaptive thermogenesis. This means that a change in energy intake influences energy expenditure in a dynamic way. Mechanisms associated with reduction of total energy expenditure following weight loss are likely to be related to decreased body mass and enhanced metabolic efficiency. Reducing calorie intake results in a decrease in body weight, initially with a marked reduction in fat free mass and a decrease in REE, and this change is maintained for several years in a reduced state. Metabolic adaptation, which is not explained by changes in body composition, lasts for more than several years. These are powerful physiological adaptations that induce weight regain. To avoid a typically observed weight-loss and regain trajectory, realistic weight loss goals should be established and maintained for more than 1 year. Using a mathematical model can help clinicians formulate advice about diet control. It is important to emphasize steady efforts for several years to maintain reduced weight over efforts to lose weight. Because obesity is difficult to reverse, clinicians must prioritize obesity prevention. Obesity prevention strategies should have high feasibility, broad population reach, and relatively low cost, especially for young children who have the smallest energy gaps to change.

Future green seawater desalination technologies (미래 그린 해수담수화 기술)

  • Kim, Jungbin;Hong, Seungkwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.403-410
    • /
    • 2020
  • The difficulty of securing freshwater sources is increasing with global climate change. On the other hand, seawater is less affected by climate change and regarded as a stable water source. For utilizing seawater as freshwater, seawater desalination technologies should be employed to reduce the concentration of salts. However, current desalination technologies might accelerate climate change and create problems for the ecosystem. The desalination technologies consume higher energy than conventional water treatment technologies, increase carbon footprint with high electricity use, and discharge high salinity of concentrate to the ocean. Thus, it is critical to developing green desalination technologies for sustainable desalination in the era of climate change. The energy consumption of desalination can be lowered by minimizing pump irreversibility, reducing feed salinity, and harvesting osmotic energy. Also, the carbon footprint can be reduced by employing renewable energy sources to the desalination system. Furthermore, the volume of concentrate discharge can be minimized by recovering valuable minerals from high-salinity concentrate. The future green seawater desalination can be achieved by the advancement of desalination technologies, the employment of renewable energy, and the utilization of concentrate.

A Study of Heat Storage System with Phase Change Material - Inward Melting in a Horizontal Cylinder (상변화 물질을 이용한 잠열축열조에 관한 기초 연구 - 수평원관내의 내향용융 열전달 실험 -)

  • Cho, N.C.;Kim, J.G.;Lee, C.M.;Yim, C.S.
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.44-54
    • /
    • 1989
  • Heat transfer phenomena during inward melting process of the phase change material were studied experimentally. N-docosane paraffin [$C_{22}H_{46}$] is used for phase change material and its melting temperature is $42.5^{\circ}C$. Experiments were performed for melting of an initially no-sub cooled or subcooled solid in a horizontal cylinder, in order to compare and investigate the radial temperature distribution, ratio of melting and melted mass, various energy components stored from the cylinder wall, figure of the melting front in the horizontal cylinder. The solid-liquid interface motion during phase change was recorded photographically. The experimental results reaffirmed the dominant role played by the conduction at early stage, by the natural convection at longer time during inward melting in the horizontal cylinder. Ratio of melting and melted mass are more influenced by wall temperature, rather than by the initial temperature of solid. The latent energy is the largest contributor to the total stored energy.

  • PDF

The Significance of Long-term Perception on Renewable Energy and Climate Change (신재생에너지와 기후변화에 대한 장기간 인식조사가 갖는 함의)

  • AHN, JOONG WOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.117-123
    • /
    • 2018
  • The long-term perception investigation of environment is needed for the persistence of each country's policy on climate change, which is greatly influenced by external factors. Long term data on perception and attitudes of people's thought can be a big data point for climate change and consistent policies can be implemented with the need for public demand. Information on the perception of the general public regarding the environment should be carried out as a basis for the national environmental policy.

Estimation of Energy Use in Residential and Commercial Sectors Attributable to Future Climate Change (미래 기후변화에 따른 가정 및 상업 부문 에너지수요 변화 추정)

  • Jeong, Jee-Hoon;Kim, Joo-Hong;Kim, Baek-Min;Kim, Jae-Jin;Yoo, Jin-Ho;Oh, Jong-Ryul
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.515-522
    • /
    • 2014
  • In this study it is attempted to estimate the possible change in energy use for residential and commercial sector in Korea under a future climate change senario. Based on the national energy use and observed temperature data during the period 1991~2010, the optimal base temperature for determining heating and cooling degree days (HDD and CDD) is calculated. Then, net changes in fossil fuel and electricity uses that are statistically linked with a temperature variation are quantified through regression analyses of HDD and CDD against the energy use. Finally, the future projection of energy use is estimated by applying the regression model and future temperature projections by the CMIP5 results under the RCP8.5 scenario. The results indicate that, overall, the net annual energy use will decrease mostly due to a large decrease in the fossil fuel use for heating. However, a clear seasonal contrast in energy use is anticipated in the electricity use; there will be an increase in a warm-season demand for cooling but a decrease in a cold-season demand for heating.

A Study on Effect Analysis of Integrated Demand Management According to Energy System Management Model (Energy System Management 모형을 통한 통합 수요관리 효과분석에 관한 연구)

  • Kim, Yong-Ha;Jo, Hyeon-Mi;Kim, Young-Gil;Park, Hwa-Yong;Kim, Hyeong-Jung;Woo, Sung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1339-1346
    • /
    • 2011
  • This paper is developed to demand management scenario of energy consumption efficiency improvement, electricity generation efficiency improvement, network efficiency improvement, change of distribution ratio, movement of energy source, change of heating system, put of CHP to quantitatively assess to impact on energy use of demand management at the national level. This scenario can be applied Energy System Management model was developed based on Energy Balance Flow. In addition, effect analysis through built demand management scenario was quantitatively evaluated integrated demand management effectiveness of energy cost saving, CO2 emission reduction and energy savings of national level by calculating to primary energy source usage change in terms of integration demand management effect more often than not a single energy source separated electricity, heat and gas.

Economic Evaluation of Unused Space PV System Using the RETScreen Model - A Case Study of Busan, Gangseo-gu - (RETScreen 기반 유휴공간 태양광 발전 시스템의 경제성 평가 연구 - 부산시 강서구 사례를 중심으로 -)

  • Kang, Seongmin;Jeon, Youngjae;Cho, Sung Heum;Lee, Daekyeom;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.21-30
    • /
    • 2017
  • Recently, There has been much discussed about unused space. This space can be used in a variety of ways. Utilizing it as a facility, craft shop, and utilizing renewable energy generation facilities. Especially, in terms of climate change should be supplied renewable energy. Renewable energy needs to be developed in terms of responding to climate change, and the recent Paris agreement is also emphasizing the importance of renewable energy. In particular, renewable energy needs to be widely disseminated. And renewable energy is limited space. In this regard, idle land can provide opportunities for securing new renewable energy generation facilities. The introduction of new and renewable energy facilities in idle space can enhance the self-sufficiency rate of the local community, which is significant in terms of responding to climate. In this study, to investigate the possibility of utilizing a unused space for a photovoltaic power generation facility, we investigated the amount of electricity which could be generated through photovoltaic power generation, and the economic effects, using a RETScreen model. The results showed that 9,738 MWh of power can be generated and that $4,540tCO_2eqcan$ be saved. Regarding the economic effect, the net present value of the facility was shown to be 2,247,389,020 KRW. As the net present value was shown to be positive, we believe that the installation of a photovoltaic power generation facility in an unused space would have a positive economic effect. We found the net present value following the fluctuation of the SMP price to be positive, though there was some variation. However, as the economic efficiency was shown to be low because the net present value in relation to the maintenance costs was negative, we believe that maintenance costs must be taken fully into account when evaluating economic efficiency. In particular, as subsidies can be used to cover maintenance costs which must be factored into photovoltaic power generation, we believe that photovoltaic power generation can have an economic effect. Because spaces not currently in use can have a positive economic effect as renewable energy power generation facilities, and can also contribute to the reduction of greenhouse gas emissions, unused spaces are thought to greatly help local governments to cope with climate change as well as reinforcing their related capabilities. We believe our study will help local governments with decisions relating to unused real estate utilization in the future.

A Study about the Effect of Energy Public Advertisement on the Energy conservation Consciousness and Behavior (에너지 절약광고가 에너지 절약의식과 행동에 미치는 영향에 관한 연구)

  • 최남숙
    • Journal of Families and Better Life
    • /
    • v.8 no.2
    • /
    • pp.119-134
    • /
    • 1990
  • The purpose of this study were to investigate; The contact of housewives with governmental public advertisement about the energy conservation, general tendency about the energy conservation consciousness and behavior. For these purposed, a survey was conducted using questionnaires. Data analysis were conducted from 367 housewives with children in Seoul. Used statistical method were Frequency Distribution, percentile, Mean, one Way Anova, t-test, F-test, Pearson's Correlation, Multiple regression Analysis and Path Analysis. Major findings are as follows. 1) Level of public advertisement contact was low. In contrast to , level of energy conservation consciousness, consciousness change, and behavior was adequately high. 2) Statistically significant difference were found in advertisement contact according to the husband's age , Energy conservation consciousness change according to husband's occupation, and energy conservation behavior according to family life cycle. 3) Energy conservation consciousness changes were increased by advertisement contact. Energy conservation behaviors were increased by conservation consciousness and the degree of conservation consciousness change. 4) Governmental public advertisement about the energy conservation has both direct and indirect effect on the energy conservation behavior. From these finds, the following suggestions are made. Governmental effort about the energy conservation advertisement is needed to be activated. And the implications for the future study was need to incorporate the psychological variables in energy conservation study.

  • PDF

Comparative Analysis of Scenarios for Reducing GHG Emissions in Korea by 2050 Using the Low Carbon Path Calculator (저탄소 경로 모형을 활용한 2050년 한국의 온실가스 감축 시나리오 비교 분석)

  • Park, Nyun-Bae;Yoo, Jung-Hwa;Jo, Mi-Hyun;Yun, Seong-Gwon;Jeon, Eui Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.556-570
    • /
    • 2012
  • The Low Carbon Path Calculator is an excel-based model to project greenhouse gas emissions from 2009 to 2050, which is based on the 2050 Pathways Calculator developed by the UK Department of Energy and Climate Change (DECC). Scenarios are developed to reduce GHG emissions in Korea at 50% based on 2005 levels by 2050 using a Low Carbon Path Calculator. They were classified in four different cases, which are high renewable, high nuclear, high CCS and mixed option scenarios. The objectives of this study are to compare scenarios in terms of GHG emissions, final energy, primary energy and electricity generation and examine the usefulness of that model in terms of identifying pathways towards a low carbon emission society. This model will enhance the understanding of the pathways toward a low carbon society and the level of the climate change policy for policy makers, stakeholders, and the public. This study can be considered as a reference for developing strategies in reducing GHG emissions in the long term.