• 제목/요약/키워드: energy band

검색결과 1,835건 처리시간 0.024초

Electronic States of Uranium Dioxide

  • Younsuk Yun;Park, Kwangheon;Hunhwa Lim;Song, Kun-Woo
    • Nuclear Engineering and Technology
    • /
    • 제34권3호
    • /
    • pp.202-210
    • /
    • 2002
  • The details of the electronic structure of the perfect crystal provides a critically important foundation for understanding the various defect states in uranium dioxide. In order to understand the local defect and impurity mechanism, the calculation of electronic structure of UO$_2$ in the one-electron approximation was carried out, using a semi-empirical tight-binding formalism(LCAO) with and without f-orbitals. The energy band, local and total density of states for both spin states are calculated from the spectral representation of Green’s function. The bonding mechanism in Perfect lattice of UO$_2$ is discussed based upon the calculations of band structure, local and total density of states.

정면밀링작업에서 절삭력을 이용한 On-Line 표면조도 감시에 관한 연구 (A Study of the on-Line Surface Roughness Monitoring using the Cutting Force in Face Milling Operation)

  • 백대균;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제14권1호
    • /
    • pp.185-193
    • /
    • 1997
  • This paper presents the on-line monitoring of the surface roughness in a face milling operation. The cut- ting force was used to monitor the surface roughness, since the insert run-outs not only deteriorate surface roughness but also change cutting force. AR model and band energy method were taken to extract the fea- tures from the cutting force. The features extracted from AR modelling are more accurate about the moni- toring than those from band energy method, whereas, the computing speed of the former is slow. An artifi- cal neural network discriminated the level of the surface roughness by using the features extracted via signal processing.

  • PDF

Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구 (Growth and photocurrent study on the splitting of the valence band for ZnIn2S4 single crystal thin film by hot wall epitaxy)

  • 홍광준
    • 센서학회지
    • /
    • 제16권6호
    • /
    • pp.419-427
    • /
    • 2007
  • Single crystal $ZnIn_{2}S_{4}$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $ZnIn_{2}S_{4}$ at $610^{\circ}C$ prepared from horizontal electric furnace. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $ZnIn_{2}S_{4}$ thin films measured with Hall effect by van der Pauw method are $8.51{\times}10^{17}\;electron/cm^{-3}$, $291{\;}cm^{2}/v-s$ at 293 K, respectively. The photocurrent and the absorption spectra of $ZnIn_{2}S_{4}$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $ZnIn_{2}S_{4}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.9514 eV. ($7.24{\times}10^{-4}\;eV/K$)$T^{2}$/(T+489 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $ZnIn_{2}S_{4}$ have been estimated to be 167.8 meV and 14.8 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}$-, $B_{1}$-, and $C_{41}$-exciton peaks.

Bandpass Discrete Prolate Spheroidal Sequences and Its Applications to Signal Representation and Interpolation

  • Oh, Jin-Sung
    • 융합신호처리학회논문지
    • /
    • 제14권2호
    • /
    • pp.70-76
    • /
    • 2013
  • In this paper, we propose the bandpass form of discrete prolate spheroidal sequences(DPSS) which have the maximal energy concentration in a given passband and as such are very appropriate to obtain a projection of signals. The basic properties of the bandpass DPSS are also presented. Assuming a signal satisfies the finite time support and the essential band-limitedness conditions with a known center frequency, signal representation and interpolation techniques for band-limited signals using the bandpass DPSS are introduced where the reconstructed signal has minimal out-of-band energy. Simulation results are given to present the usefulness of the bandpass DPSS for efficient representation of band-limited signal.

$Cd_4GeSe_6$ 단결정의 deep level측정 (Measurement on the deep levels of $Cd_4GeSe_6$ single crystals)

  • 김덕태
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권6호
    • /
    • pp.504-510
    • /
    • 1994
  • In this work the crystal structure, optical absorption and photoluminescence of Cd$_{4}$GeSe$_{6}$ single srystals grown by the vertical bridgman method are investigated. From the observed results of the PICTS, we proposed on energy band model which contains deep levels between the conduction band and the valence band. The energy band model permit us to explain the mechanism of the radiative recombination for the Cd$_{4}$GeSe$_{6}$ single crystals.als.

  • PDF

에너지여과 투과전자현미경을 이용한 카올리나이트의 탈수반응 연구 (An Investigation of the Dehydroxylation of Kaolinite Using Energy-Filtering Transmission Electron Microscopy)

  • 이수정;김윤중;문희수
    • 한국광물학회지
    • /
    • 제12권1호
    • /
    • pp.23-31
    • /
    • 1999
  • The dehydroxylation of kaolinite was investigated in detail by means of energy-filtering transmission electron microscope with both orientations parallel and perpendicular to c. The dehydroxylation could be characterized by the broad background including (0.211) band (20~24$^{\circ}$ 2$\theta$) on X-ray diffraction and by the three halo rings (d-spacing : 3.28~4.40$\AA$ (near (02,11) band), 2.41~245$\AA$ (near (20,13) band), 1.16~1.23$\AA$ (near (0.8,44) band)), and (02,11) and (20,13) spots on electron diffraction. These indicate existence of a short-range order along the a and b axes. Interplanar spacing of (001) is reduced to about 6.86$\AA$ and the sharp additional intensity maximum of about 14.2$\AA$ reveals that metakaolinite has a modulated structure along c axis. It is proposed that the modulated structure is attributed to the domains consisting of more than two-layers due to the changes of positions of the vacant octahedral sites in successive layers.

  • PDF

수소가 흡착된 W(011) 표면의 재구성 (Surface Reconstruction on Hydrogen Covered W(011))

  • 김희봉;최원국;홍사용;황정남;정광호
    • 한국진공학회지
    • /
    • 제1권1호
    • /
    • pp.83-87
    • /
    • 1992
  • 최근 Angle Resolved Ultraviolet Photoemission Spectroscopy(ARUPS)를 통하여 Mo(011)과 W(011)의 surface Fermi contour에 관한 연구가 발표되었다. Hydrogen 흡착시 W(011)의 electron contour는 팽창하였다. 이것은 electron contour를 이루는 surface state가 hydrogen 흡착시 higher binding energy로 이동한 결과이다. Surface state의 higher binding energy로의 이동은 결국 band flattening으로 이해되며, 이 band flattening 에 S.E.Trullinger의 long range dipole dipole force와 Kohn anomaly 현상을 부합시켜 W(011) surface에 수소 흡착시 일어나는 reconstruction 현상에 대한 설명을 시도해 보았다.

  • PDF

Towards Designing Environmentally Stable Conjugated Polymers with very Small Band-Gaps

  • Hong, Sung Y.;Kim, Sung C.
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권11호
    • /
    • pp.1649-1654
    • /
    • 2003
  • We have investigated substituent effect on the stabilization energies, and nucleus-independent chemical shifts of pentafulvalenes and on the electronic structures of the corresponding polypentafulvalenes to design environmentally stable semiconductive or conductive polymers. Geometrical optimizations of the molecules were carried out at the density functional level of theory with B3LYP hybrid functional and 6-311+G(d) basis set. Stabilization energies were estimated using isodesmic and homodesmotic reactions. As a criterion of aromaticity nucleus-independent chemical shifts of the molecules were computed using GIAO approach. For the polymers the geometrical parameters were optimized through AM1 band calculations and the electronic structures were obtained through modified extended Huckel band calculations. It is found that strong electronwithdrawing substituents increase isodesmic and homodesmotic stabilization energies of pentafulvalene, though it does not increase the aromaticity. Nitro-substituted pentafulvalene is estimated to have stabilization energy as much as azulene. However, substitution either with electron-donating groups or with electronwithdrawing groups does not significantly affect the electronic structures of polypentafulvalene and poly (vinylenedioxypentafulvalene).

Inverted structure perovskite solar cells: A theoretical study

  • Sahu, Anurag;Dixit, Ambesh
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1583-1591
    • /
    • 2018
  • We analysed perovskite $CH_3NH_3PbI_{3-x}Cl_x$ inverted planer structure solar cell with nickel oxide (NiO) and spiroMeOTAD as hole conductors. This structure is free from electron transport layer. The thickness is optimized for NiO and spiro-MeOTAD hole conducting materials and the devices do not exhibit any significant variation for both hole transport materials. The back metal contact work function is varied for NiO hole conductor and observed that Ni and Co metals may be suitable back contacts for efficient carrier dynamics. The solar photovoltaic response showed a linear decrease in efficiency with increasing temperature. The electron affinity and band gap of transparent conducting oxide and NiO layers are varied to understand their impact on conduction and valence band offsets. A range of suitable band gap and electron affinity values are found essential for efficient device performance.

Design of a Monolithic Photoelectrochemical Tandem Cell for Solar Water Splitting with a Dye-sensitized Solar Cell and WO3/BiVO4 Photoanode

  • Chae, Sang Youn;Jung, Hejin;Joo, Oh-Shim;Hwang, Yun Jeong
    • Rapid Communication in Photoscience
    • /
    • 제4권4호
    • /
    • pp.82-85
    • /
    • 2015
  • Photoelectrochemical cell (PEC) is one of the attractive ways to produce clean and renewable energy. However, solar to hydrogen production via PEC system generally requires high external bias, because of material's innate electronic band potential relative to hydrogen reduction potential and/or charge separation issue. For spontaneous photo-water splitting, here, we design dye-sensitized solar cell (DSSC) and their monolithic tandem cell incorporated with a $BiVO_4$ photoanode. $BiVO_4$ has high conduction band edge potential and suitable band gap (2.4eV) to absorb visible light. To achieve efficient $BiVO_4$ photoanode system, electron and hole mobility should be improved, and we demonstrate a tandem cell in which $BiVO_4/WO_3$ film is connected to cobalt complex based DSSC.