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Bandpass Discrete Prolate Spheroidal Sequences and Its

Applications to Signal Representation and Interpolation

Jin-sung Oh*

In this paper, we propose the bandpass form of discrete prolate spheroidal sequences(DPSS) which have the

maximal energy concentration in a given passband and as such are very appropriate to obtain a projection of

signals. The basic properties of the bandpass DPSS are also presented. Assuming a signal satisfies the finite

time support and the essential band-limitedness conditions with a known center frequency, signal

representation and interpolation techniques for band-limited signals using the bandpass DPSS are introduced

where the reconstructed signal has minimal out-of-band energy. Simulation results are given to present the

usefulness of the bandpass DPSS for efficient representation of band-limited signal.
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Slepian[1] identified a set of vectors important to

digital signal processing known as the discrete prolate

spheroidal sequences(DPSS) which can be viewed as the

discretization of the prolate spheroidal wave

functions(PSWF). The DPSS have maximum energy

concentration within a given time interval and

bandwidth. Since then the study of DPSS has been an

active area of research such as sampling[2][3] and

spectrum estimation[4]. Using DPSS as an orthogonal

basis[2][3], it is shown to reduce the sampling rate and

reconstruction error. In addition, using the high energy

concentration property of DPSS, the DPSS used as

multiple window functions[4] are also shown to be

perfectly suited to stationary spectrum estimation.

Recently, the continuous bandpass type of the PSWF

based on bandpass sampling theorem has been proposed

in [5] for maximizing energy concentration on the given

pass band. Although the continuous bandpass type of

the PSWF has been shown to be efficient representation

of carrier frequency type signals over finite intervals, the

eigenvectors from the kernel matrix are difficult to
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generate due to the computation complexity. In [5], a

truncated version of the kernel matrix is used for

computation of the significant eigenvalues and the

corresponding eigenvectors, which causes error in the

signal reconstruction. For a discrete signal both in time

and frequency domains, the discrete-to-discrete PSWF

has been proposed in [6]. The discrete-to-discrete PSWF

is also shown to be effective in the area of filter design,

multiplexing-modulation, and encryption and suitable for

finite time and bandwidth signal processing. The

discrete-to-discrete PSWF is one of the discrete

bandpass types which will be discussed later. The

applications of bandpass type of DPSS are also shown

to be very effective in pulse shaping design of ultra

wideband[7] and orthogonal frequency division

multiplexing[8], where they simply define the bandpass

DPSS using the modulation technique.

On the other hand, interpolation and prediction for

uniformly sampled signals is an important area in digital

signal processing. As indicated in [9] and [10], the

accuracy of the existing methods for low pass signals

deteriorate significantly when they are applied to

bandpass signals with center frequency. Therefore, it is

needed to develop an interpolation method specifically for

bandpass signals.

In this paper, we introduce new bandpass DPSS

which have the maximal energy concentration in a given

passband. Some of the basic properties of the bandpass

DPSS are also presented. The bandpass DPSS can be

obtained from the eigenvalue equation or equivalently
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from modulation of baseband DPSS. In addition, signal

representation and interpolation techniques for

band-limited signals using the bandpass DPSS are

introduced where the reconstructed signal has minimal

out-of-band energy.

This paper is organized as follows. In section 2, we

briefly review the baseband DPSS, and then define the

bandpass DPSS that can be obtained from the

eigenvalue equation or directly from modulation of

baseband DPSS. We show some of the properties of the

bandpass DPSS, which indicates that the bandpass type

signal can be efficiently represented. The relationships

between the bandpass DPSS and other bandpass forms

proposed in [5] and [6] are also discussed in this

section. In section 3, as an application of the bandpass

DPSS, signal representation and interpolation techniques

for band-limited signals using the bandpass DPSS are

introduced. The simulation results are also given to

present the usefulness of the bandpass DPSS for

efficient representation of band-limited signal.

2.1 Baseband DPSS

The discrete prolate spheroidal sequences(DPSS) are

parameterized by the time bandwidth product  and

have been defined as the solution to the following

eigenvalue problem:

 
 




sin

 

where ≤ ≤ and ≤≤ . The  real

eigenfunctions  are known as DPSS, and the

corresponding eigenvalues hold the following relationship:

    ⋯   . The decays

exponentially from 1 to 0, which indicates the energy

concentration in the given bandwidth [-,]. As a
counterpart of baseband DPSS, the periodic DPSS

proposed in [11] is used for the application involving the

periodic band-limited functions.

2.2. Bandpass DPSS

In this section, we propose a set of functions that are

bandpass form of discrete prolate spheroidal sequences,

where the functions have the highest energy

concentration in a given passband.

Definition of bandpass DPSS

  
 (2)

where the passband is [≤,≤], and
≤ ≤. The passband DPSS maximizes its energy
in the specified bandpass frequency range [,
]. Instead of solving the eigenvalue equation, the
bandpass DPSS can be directly obtained from baseband

DPSS multiplied by an exponential carrier 
. The

properties of the bandpass DPSS depend on the kernel

matrix ≡
 


sin

. Since the

kernel  is Hermitian matrix, i.e.,  , the
eigenvalues  are real and the eigenvectors  are

orthogonal. The eigenvectors are normalized to be

orthonormal such that 
 



 . Figure 1 shows

the eigenvalues  of the kernel matrix  for ,
  , and  . All the eigenvalues satisfy that
   ∀, and most of the eigenvalues are very

close to 1 or 0.
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Fig. 1. Eigenvalues  of the kernel matrix  for

,   , and  .

Let  where  denotes Fourier transform.
Then ∀. Figure 2 (a) shows the
cumulative spectrum of the bandpass DPSS, which is

defined by 





. It clearly verifies that

spectrum of the bandpass DPSS has unity on the given

passband [,] and zero on out of band. As

an example, the first and second sequences ( and

) are depicted in Fig. 2 (b) and (c), respectively.
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Fig. 2. An example of bandpass DPSS for    and

 : (a) cumulative spectrum of the bandpass DPSS,
(b) , (c)  (· denotes real part).
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Continuous-time Bandwidth

Baseband 

sin 
[1]

[-,]

Bandpass

cos 

×


 




sin 



[5] [,

]∪

[,

]

For the signal representation with time width() and

band width(), the number of DPSS() with maximal

energy concentration is determined by the

time-bandwidth product: ≃ for large .

Suppose that a signal has the bandwidth

 ∪. Then, the

required number of sequences for the signal

representation should be ≃ for baseband

DPSS, while ≃ for the bandpass DPSS.

Therefore, since a bandpass signal has no spectral

contents over lower frequency band as well as upper

frequency band, the bandpass DPSS will be useful for

the efficient representation of the bandpass type signal

with small values of .

2.3 Relationship between bandpass DPSS and other

DPSSs

The kernels of baseband and bandpass-type DPSS

and corresponding bandwidth are summarized in Table 1.

Table 1. Kernel comparison

Discrete-time Bandwidth

Baseband



sin 
[1]


 sin 




sin
 

[11]

[-,]

Bandpass


   



sin


 

 

 

×


sin




sin  
 

[6]

[,

]

[,]

As one can see, the discrete-to-discrete PSWF[6] and

the periodic DPSS[11] are strongly related for letting

 , i.e., the discrete-to-discrete PSWF can be

obtained from the periodic DPSS multiplied by an

exponential carrier centered at  . Thus, the

discrete-to-discrete PSWF is a bandpass form of the

periodic DPSS, while the proposed one is a bandpass

form of the DPSS. For


,


,

and large , the kernel of the discrete-to-discrete

PSWF can be expressed as


 


sin




sin

≈
 


sin



Therefore, the discrete-to-discrete PSWF[6] is

approximately equivalent to the bandpass DPSS for large

. For a comparison, the continuous-time bandpass

PSWF[5] is also listed in Table 1.

3.1 Signal Representation

We consider an application of the bandpass DPSS for

an efficient representation of bandpass type signals.

Efficient representation of bandpass signals requires a

fixed number  of basis functions  , ≤ ≤

which capture most of the energy in the given signal.

Since the set of bandpass DPSS  is orthonormal,

a signal  can be represented in terms of this set.

 





 (3)

 
 




(4)

If the signal energy outside the given frequency band

 is very small

  
 


 



 (5)

an approximate representation of  can be obtained

by

 ≈   (6)

Accuracy of the signal approximation depends on how

concentrated the energy is within the given frequency

band.

The following two types of bandpass signal are used

for test.

Test signal-1:

  sin


cos







Test signal-2:
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  cos
  cos

 
sin

  sin
 

andwhere  ,   , and . Figure 3 and 4

show the representation results of the test signal. In

this test, the parameters of the bandpass DPSS are

  ,  , and  (see Fig. 3 (b) and 4

(b)). In these examples, the mean absolute error(MAE)

are seen to be  for test signal-1 and  for test

signal-2. Since the DPSS have the properties of optimal

energy preservation when both the time and the

frequency extensions are finite, for non time-limited

signal such as test signal-2, the representation error is

relatively large compared with the time-limited and

band-limited signal (test signal-1). However, the 

basis functions are sufficient to represent the test

signals with good accuracy.
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Fig. 3. An example of test signal-1 representation: (a)

test signal  , (b) cumulative spectrum of the

bandpass DPSS and normalized , (c) , (d)

error ( ) (MAE=).

Fig. 4. An example of test signal-2 representation: (a)

test signal  , (b) cumulative spectrum of the

bandpass DPSS and normalized , (c) , (d)

error ( ) (MAE=).

3.2 Signal Interpolation

Suppose we want to reconstruct a discrete-time signal

 , ≤ ≤ from a set of subsamples ,
where ≤  ⋯≤ and . If the

signal  belongs to a subspace spanned by -basis

 , where ≤, the interpolated signal 
can be obtained from the following matrix equation:

   ⋯ ×




 ⋯ 
 ⋯ 

⋯





†













↪

   for
 for 

(7)

Since the matrix  is not a square matrix, the

pseudo-inverse(† ) is used for the projection. If the rank
of  is equal to , there exists a solution in the least

square sense.

Uniform Interpolation

In this simulation, we used a speech signal with

deterministic passband spectrum. Figure 5 (a) shows the

original and uniformly subsampled speech signals, where

 and . The interpolated signals using the
baseband and bandpass DPSSs, i.e.,   and

   , are shown in Fig. 5 (d) and (e),

respectively. Since the small spectral residues in the

lower frequency band of the signal produce interpolation

errors[10] (see Fig. 5 (f)), the interpolation based on the

bandpass DPSS has a better performance in the

representation of the bandpass type signal with small

values of  (see the interpolation errors shown in Fig. 5
(h) and (i)). In [12], it has been observed that the

presence of noise or out-of-band components can

produce significant interpolation errors.

Since noises are often present, a noisy subsampled

signal is considered. Table 2 shows the MAE

performance of the interpolated test signal-1 in the

presence of additive Gaussian noise. Figure 6 shows an
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example of interpolated test signal-1 with SNR=20dB.

The interpolation using the bandpass DPSS is shown to

provide a better performance for all noise levels. As

shown in Fig. 6 (d) and (e), it can be verified that the

interpolation error(   ) depends on the
bandwidth  of the DPSS, i.e.,  ∝ . This method
also works for low pass signals by setting    in

Eq. (2). The interpolation using bandpass DPSS is

robust with respect to noisy samples and can be easily

extended to the case of nonuniform sampling[3] and

interpolation[13].
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Fig. 5. 1:5 interpolation results: (a) original  and

subsampled  , (b) cumulative spectrum of  and

normalized , (c) cumulative spectrum of 

and normalized , (d)  by  with

 , (e)  by  with , (f) normalized



for  , (g) normalized 


for  , (h)

interpolation error for  (MAE=0.0349), (i)

interpolation error for  (MAE=0.0291).

Table 2. MAE performance of the interpolated test

signal-1

Noise condition

(dB)

baseband

DPSS

bandpass

DPSS

40

30

20

10

0.0031

0.0086

0.0267

0.0841

0.0025

0.0052

0.0180

0.0481
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Fig. 6. 1:5 interpolated test signal-1 for SNR=20dB: (a)

original  and noisy subsampled   , (b)
 by

 with  , , (c)  by  with

 , , (d) interpolation error for  , (e)

interpolation error for  .

Missing Data Interpolation

For the interpolation of sampled signals with missing

data, the same methodology is applied. The general
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assumption is that the missing data on the sampled

signals are negligible and that the available samples are

representatives of the original signal[14]. Figure 7 shows

an example of interpolated speech signal of length 1000

with 20 missing data. The MAE performance for a

variation of number of missing data is also presented in

Fig. 7 (c), where missing interval and position are

randomly chosen and 100 experiments are performed.

The interpolation using the bandpass DPSS appears to

have reasonable performance, while the method by

baseband DPSS produces significant errors in the

interpolated signal as the missing data increase.

Fig. 7. Interpolated speech signal with 20 missing data:

(a) missing signal, (b) the interpolation results by

baseband DPSS  and bandpass DPSS , (c)

MAE performance for a variation of number of missing

data (100 experiments with different missing position).

In this paper, we introduce the bandpass form of

discrete prolate spheroidal sequences(DPSS) which have

the maximal energy concentration in a given passband.

We show that the bandpass DPSS can be obtained from

the eigenvalue equation or directly from modulation of

baseband DPSS, and some of the properties of the

bandpass DPSS, which indicates that the bandpass type

signal can be efficiently represented. New methodology

for representation and interpolation of signals using the

bandpass DPSS is also presented. The simulation results

are shown to demonstrate the usefulness of the

bandpass DPSS for an efficient representation of

passband type signals. Specially, the interpolation using

bandpass DPSS is robust with respect to noisy samples

and can be easily extended to the case of nonuniform

sampling and interpolation. Future work will focus on

the area on nonuniform sampling and interpolation of

signals.
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