• Title/Summary/Keyword: end-point model

Search Result 338, Processing Time 0.032 seconds

Effect of the Brain Death on Hemodynamic Changes and Myocardial Damages in Canine Brain Death Model -Electrocard iographic and Hemodynamic Changes in the Brain Death Model Induced by Gradual Increase of Intracranial Pressure- (잡견을 이용한 실험적 뇌사모델에서 뇌사가 혈역학적 변화와 심근손상에 미치는 영향 -제2보 : 뇌압을 점진적으로 증가시켜 유발한 뇌사모델의 심전도 및 혈역학적 변화-)

  • 조명찬;이동운
    • Journal of Chest Surgery
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • We developed an experimental model of brain death using dogs. Brain death was induced by increasing the intracranial pressure (ICP) gradually by continuous Infusion of saline through an epidural Foley catheter in 5 mongrel dogs (weight, 18~22kg). Hemodynamic and electrocardiographic changes were evaluated continuously during the process of brain death and obtained the following results. 1. The average volume and time required to induce brain death was 4.8$\pm$1.0ml and 143.0$\pm$30.9minutes respectively. 2. There was a steady rise of the ICP after starting the constant infusion of saline, and ICP rised continuously until the brain death (122.0$\pm$62.5mmHg). After reaching to the maximal value (125.0$\pm$47.7mmHg) at 30 minutes after brain death, the ICP dropped and remained approximately constant at the slightly higher level than the mean arterial pressure (MAP). 3. MAP showed no change until the establishment of brain death and it declined gradually. The peak heart rate reached to 172.6$\pm$35.3/min at 30 minutes after the brain death. 4. Even though the body temperature and all hemodynamic variables, such as cardiac output, mean pulmonary arterial pressure, left ventricular (LV) end-diastolic pressure and LV maximum + dp/dt, were slightly greater than those of basal state, at the point of brain death, there was no statistically significant change during t e process of brain death. 5. There was no remarkable arrhythmias during the experiment except ventricular premature beats which was observed transiently in one dog at the time of brain death. Hemodynamic changes in the brain death model induced by gradual ICP increment were inconspicuous, and arrhythmias were rarely seen. Hyperdynamic state, which was observed at the point of brain death in another brain death model caused by abrupt ICP increase, was not observed.

  • PDF

Study on the Steam Line Break Accident for Kori Unit-1 (고리 1호기에 대한 증기배관 파열사고 연구)

  • Tae Woon Kim;Jung In Choi;Un Chul Lee;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.186-195
    • /
    • 1982
  • The steam line break accident for Kori Unit 1 is analyzed by a code SYSRAN which calculates nuclear power and heat flux using the point kinetics equation and the lumped-parameter model and calculates system transient using the mass and energy balance equation with the assumption of uniform reactor coolant system pressure. The 1.4 f $t^2$ steam line break accident is analyzed at EOL (End of Life), hot shutdown condition in which case the accident would be most severe. The steam discharge rate is assumed to follow the Moody critical flow model. The results reveal the peak heat flux of 38% of nominal full power value at 60 second after the accident initiates, which is higher than the FSAR result of 26%. Trends for the transient are in good agreement with FSAR results. A sensitivity study shows that this accident is most sensitive to the moderator density coefficient and the lower plenum mixing factor. The DNBR calculation under the assumption of $F_{{\Delta}H}$=3.66, which is used in the FSAR with all the control and the shutdown assemblies inserted except one B bank assembly and of Fz=1.55 shows that minimum DNBR reaches 1.62 at 60 second, indicating that the fuel failure is not anticipated to occur. The point kinetics equation, the lumped-parameter model and the system transient model which uses the mass and energy balance equation are verified to be effective to follow the system transient phenomena of the nuclear power plants.lear power plants.

  • PDF

Extraction of Individual Trees and Tree Heights for Pinus rigida Forests Using UAV Images (드론 영상을 이용한 리기다소나무림의 개체목 및 수고 추출)

  • Song, Chan;Kim, Sung Yong;Lee, Sun Joo;Jang, Yong Hwan;Lee, Young Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1731-1738
    • /
    • 2021
  • The objective of this study was to extract individual trees and tree heights using UAV drone images. The study site was Gongju national university experiment forest, located in Yesan-gun, Chungcheongnam-do. The thinning intensity study sites consisted of 40% thinning, 20% thinning, 10% thinning and control. The image was filmed by using the "Mavic Pro 2" model of DJI company, and the altitude of the photo shoot was set at 80% of the overlay between 180m pictures. In order to prevent image distortion, a ground reference point was installed and the end lap and side lap were set to 80%. Tree heights were extracted using Digital Surface Model (DSM) and Digital Terrain Model (DTM), and individual trees were split and extracted using object-based analysis. As a result of individual tree extraction, thinning 40% stands showed the highest extraction rate of 109.1%, while thinning 20% showed 87.1%, thinning 10% showed 63.5%, and control sites showed 56.0% of accuracy. As a result of tree height extraction, thinning 40% showed 1.43m error compared with field survey data, while thinning 20% showed 1.73 m, thinning 10% showed 1.88 m, and control sites showed the largest error of 2.22 m.

Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.537-573
    • /
    • 2015
  • Multiple-step beams carrying intermediate lumped masses with/without rotary inertias are widely used in engineering applications, but in the literature for free vibration analysis of such structural systems; Bernoulli-Euler Beam Theory (BEBT) without axial force effect is used. The literature regarding the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass systems, Bernoulli-Euler multiple-step and multi-span beams carrying multiple spring-mass systems and multiple point masses are plenty, but that of Timoshenko multiple-step beams carrying intermediate lumped masses and/or rotary inertias with axial force effect is fewer. The purpose of this paper is to utilize Numerical Assembly Technique (NAT) and Differential Transform Method (DTM) to determine the exact natural frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and/or rotary inertias. The model allows analyzing the influence of the shear and axial force effects, intermediate lumped masses and rotary inertias on the free vibration analysis of the multiple-step beams by using Timoshenko Beam Theory (TBT). At first, the coefficient matrices for the intermediate lumped mass with rotary inertia, the step change in cross-section, left-end support and right-end support of the multiple-step Timoshenko beam are derived from the analytical solution. After the derivation of the coefficient matrices, NAT is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equations of the motion. The calculated natural frequencies of Timoshenko multiple-step beam carrying intermediate lumped masses and/or rotary inertias for the different values of axial force are given in tables. The first five mode shapes are presented in graphs. The effects of axial force, intermediate lumped masses and rotary inertias on the free vibration analysis of Timoshenko multiple-step beam are investigated.

Induced Abortion Trends and Prevention Strategy Using Social Big-Data (소셜 빅데이터를 이용한 낙태의 경향성과 정책적 예방전략)

  • Park, Myung-Bae;Chae, Seong Hyun;Lim, Jinseop;Kim, Chun-Bae
    • Health Policy and Management
    • /
    • v.27 no.3
    • /
    • pp.241-246
    • /
    • 2017
  • Background: The purpose of this study is to investigate the trends on the induced abortion in Korea using social big-data and confirm whether there was time series trends and seasonal characteristics in induced abortion. Methods: From October 1, 2007 to October 24, 2016, we used Naver's data lab query, and the search word was 'induced abortion' in Korean. The average trend of each year was analyzed and the seasonality was analyzed using the cosinor model. Results: There was no significant changes in search volume of abortion during that period. Monthly search volume was the highest in May followed by the order of June and April. On the other hand, the lowest month was December followed by the order of January, and September. The cosinor analysis showed statistically significant seasonal variations (amplitude, 4.46; confidence interval, 1.46-7.47; p< 0.0036). The search volume for induced abortion gradually increased to the lowest point at the end of November and was the highest at the end of May and declined again from June. Conclusion: There has been no significant changes in induced abortion for the past nine years, and seasonal changes in induced abortion have been identified. Therefore, considering the seasonality of the intervention program for the prevention of induced abortion, it will be effective to concentrate on the induced abortion from March to May.

A Study on the Fatigue Strength Evaluation for Fillet Weldment including Stress Singularity using Structural Stress with Virtual Node Method (응력 특이점을 갖는 필릿 용접구조물의 피로해석을 위한 가상절점법을 이용한 구조응력 계산 기법 고찰)

  • Ha Chung-In;Kang Sung-Won;Kim Myung-Hyun;Kim Man-Soo;Sohn Sang-Yong;Heo Joo-Ho
    • Journal of Welding and Joining
    • /
    • v.24 no.3
    • /
    • pp.27-33
    • /
    • 2006
  • Structural stress approach is well known as a mesh-size insensitive fatigue assessment method by using finite element analyses. It is, however, difficult to estimate the structural stress (SS) at weld end points due to stress singularities when shell elements are used. In this study, fatigue evaluations with longitudinal load carrying box fillet weldment under out-of-plane bending load have been performed by using virtual node method (VNM) in order to avoid the problem, which is called the weld end effect. Various combinations of virtual node parameters, such as reference point and virtual node locations, are investigated for the estimation of proper structural stress values applying VNM in a systematic manner. The appropriate guidance of virtual node parameter has been offered for the fillet weldment considered in the study. The structural stress values obtained by VNM have also been validated by comparing the result with finite element model including weld bead. Moreover, the fatigue strength of the fillet weldment based on the equivalent structural stress is shown to be consistent with the master S-N curve.

Design and Implementation of Smart Factory MES Model Based on Process Visualizationa for Small and Medium Business in Korea (대한민국 중소기업을 위한 공정 시각화에 기초한 스마트팩토리 생산관리시스템의 설계 및 구축)

  • Kho, Jeong-Seog;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.135-141
    • /
    • 2019
  • South Korea's smart factory drive is at a very important point. While large-scale funds and manpower are invested to secure international competitiveness and revitalize manufacturing, software investments that are only approached by IT suppliers may end up creating systems that do not meet the actual conditions of the field. As a result, there are problems in the manufacturing sector that can cause consumers to feel the fatigue of innovation in the manufacturing sector. SMEs should check from scratch and establish a gradual integration system so that they can reduce failures in IT investments and implement OT-oriented smart factories that are well utilized in the field. To this end, a process visualization solution was proposed and a step-by-step innovation was proposed at the basic level and the ICT unapplied level.

STRESS ANALYSIS OF SUPPORTING TISSUES AND IMPLANTS ACCORDING TO IMPLANT FIXTURE SHAPES AND IMPLANT-ABUTMENT CONNECTIONS (임플랜트 고정체의 형태와 연결방식에 따른 임플랜트 및 지지조직의 응력분포)

  • Han Sang-Un;Park Ha-Ok;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.226-237
    • /
    • 2004
  • Purpose: Four finite element models were constructed in the mandible having a single implant fixture connected to the first premolar-shaped superstructure, in order to evaluate how the shape of the fixture and the implant-abutment connection would influence the stress level of the supporting tissues fixtures, and prosthethic components. Material and methods : The superstructures were constructed using UCLA type abutment, ADA type III gold alloy was used to fabricate a crown and then connected to the fixture with an abutment screw. The models BRA, END , FRI, ITI were constructed from the mandible implanted with Branemark, Endopore, Frialit-2, I.T.I. systems respectively. In each model, 150 N of vertical load was placed on the central pit of an occlusal plane and 150 N of $40^{\circ}$ oblique load was placed on the buccal cusp. The displacement and stress distribution in the supporting tissues and the other components were analysed using a 2-dimensional finite element analysis . The maximum stress in each reference area was compared. Results : 1. Under $40^{\circ}$ oblique loading, the maximum stress was larger in the implant, superstructure and supporting tissue, compared to the stress pattern under vertical loading. 2. In the implant, prosthesis and supporting tissue, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 3. In the superstructure and implant/abutment interface, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 4. In the implant fixture, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 5 The stress was more evenly distributed in the bone/implant interface through the FRI of trapezoidal step design. Especially Under $40^{\circ}$ oblique loading, The maximum stress was smallest in the bone/implant interface. 6. In the implant and superstructure and supporting tissue, the maximum stress occured at the crown loading point through the ITI. Conclusion: The stress distribution of the supporting tissue was affected by shape of a fixture and implant-abutment connection. The magnitude of maximum stress was reduced with the internal connection type (FRI) and the morse taper type (ITI) in the implant, prosthesis and supporting tissue. Trapezoidal step design of FRI showed evenly distributed the stress at the bone/implant interface.

Study of Design Standard Establishment of Vehicle Rotation Area in the Dead-end Parking Lot (막다른주차장내 차량회전구간 설계기준 정립에 관한 연구)

  • Lim, Jae-Moon;Oh, Se-Kyung;Kim, Hoe-Kyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7403-7415
    • /
    • 2014
  • This study points out a problem that the vehicle rotation area provided in a dead-end parking lot for apartment blocks is misused as unreasonable parking places but accordingly, the edge parking spaces are rarely used for parking. Therefore, this study aims to establish a parking design standard to improve the parking convenience and land-use efficiency by investigating the real parking behaviors and problems identified in the study area, multiple apartment blocks in Haeundae-gu, Busan. This study calculated two simple linear regression models for two mutually exclusive factors, such as the parking convenience and land-use efficiency, respectively, and specified a trade-off point that optimizes both factors. The study results found that parking convenience and land-use efficiency can be improved by not only changing the misused vehicle rotation area to normal parking spaces depending on the usage pattern, but also by increasing the width of the edge parking spaces from 2.3m to 2.6m. Finally, this study suggests two parking design cases for more realistic design applications by considering the parking environment in the dead-end parking lot for apartment blocks.

Analysis of Three Dimensional Positioning Accuracy of Vectorization Using UAV-Photogrammetry (무인항공사진측량을 이용한 벡터화의 3차원 위치정확도 분석)

  • Lee, Jae One;Kim, Doo Pyo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.525-533
    • /
    • 2019
  • There are two feature collection methods in digital mapping using the UAV (Unmanned Aerial Vehicle) Photogrammetry: vectorization and stereo plotting. In vectorization, planar information is extracted from orthomosaics and elevation value obtained from a DSM (Digital Surface Model) or a DEM (Digital Elevation Model). However, the exact determination of the positional accuracy of 3D features such as ground facilities and buildings is very ambiguous, because the accuracy of vectorizing results has been mainly analyzed using only check points placed on the ground. Thus, this study aims to review the possibility of 3D spatial information acquisition and digital map production of vectorization by analyzing the corner point coordinates of different layers as well as check points. To this end, images were taken by a Phantom 4 (DJI) with 3.6 cm of GSD (Ground Sample Distance) at altitude of 90 m. The outcomes indicate that the horizontal RMSE (Root Mean Square Error) of vectorization method is 0.045 cm, which was calculated from residuals at check point compared with those of the field survey results. It is therefore possible to produce a digital topographic (plane) map of 1:1,000 scale using ortho images. On the other hand, the three-dimensional accuracy of vectorization was 0.068~0.162 m in horizontal and 0.090~1.840 m in vertical RMSE. It is thus difficult to obtain 3D spatial information and 1:1,000 digital map production by using vectorization due to a large error in elevation.